Lecture 24

Elliptic functions

Let ω_1, ω_2 be two complex numbers such that ω_1 and ω_2 are linearly independent over \mathbb{R} .

Definition 1. Meromorphic function f(z) is said to be *doubly periodic* if for any $z \in \mathbb{C}$

$$f(z + \omega_1) = f(z + \omega_2) = f(z).$$

Let $\tau := \omega_1/\omega_2$. Clearly $\tau \in \mathbb{C}$ is not purely real. Moreover, changing ω_1 to $-\omega_1$, if necessary, we can assume that $\text{Im}(\tau) > 0$. Considering function $F(z) := f(\omega_1 z)$ instead of f, we will get a doubly-periodic function with periods 1 and τ . Hence, from now on we assume that periods of f are 1 and τ , so that

$$f(z+n+m\tau) = f(z)$$
, for all $n, m \in \mathbb{Z}$.

We say that 1 and τ generate *lattice*

$$\Lambda := \{ n + m\tau \mid n, m \in \mathbb{Z} \}.$$

and call two points $z, w \in \mathbb{C}$ equivalent modulo Λ if $z - w \in \Lambda$.

Let Π be the parallelogram generated by vectors 1 and τ :

This is *fundamental parallelogram*, i.e. any point $z \in \mathbb{C}$ is equivalent to a unique point in Π (you have to include only one vertex and two adjacent sides into Π for it to work). Therefore any doubly periodic function f(z) is uniquely determined by its behavior on Π .

Remark 2. The same will be true for any translate of Π : a parallelogram of the form $\Pi + h$, $h \in \mathbb{C}$.

The following theorem sates that there is no interesting holomorphic doubly periodic functions.

Theorem 3. An entire doubly periodic function is constant.

Proof. Being continuous on a compact region $\overline{\Pi}$, function |f(z)| is bounded. Therefore, by Liouville's theorem, f(z) is constant.

Therefore, to get interesting doubly-periodic functions, we have to allow for poles. A non-constant doubly-periodic function is called **elliptic function**. Such function must have finitely many poles in any given bounded set. In particular, there are finitely many poles in Π . It turns out, elliptic function f(z) has to have at least two poles (or a double pole) in Π .

Theorem 4. The total number of poles of an elliptic function f(z) (counted with multiplicities) is ≥ 2 .

Proof. If there are no poles on $\partial \Pi$, we can apply residue theorem:

$$\int_{\partial\Pi} f(z)dz = 2\pi \boldsymbol{i} \sum \operatorname{res}(f).$$

On the other hand, the integral on the left hand side is zero since f(z) is doubly periodic (and integrals over the opposite sides of Π cancel out). Hence sum of the residues is 0, so f(z) can not have only one simple pole in Π .

If there are poles on $\partial \Pi$, we can shift Π a bit by substituting it with $\Pi + h$ for some $h \in \mathbb{C}$.

Definition 5. Number of poles (with multiplicities) of an elliptic function f(z) is called its **order** (not to be confused with the order of a zero or a pole).

Theorem 6. Elliptic function f(z) of order *m* has exactly *m* zeros in Π .

Corollary 7. Elliptic function of order *m* takes any value $c \in \mathbb{C}$ exactly *m* times.

Proof of the corollary. Consider zeros of an elliptic function f(z) - c.

Proof of the theorem. Assume first that f(z) does not have zeros or poles on $\partial \Pi$. Then by argument principle

$$\int_{\partial\Pi} \frac{f'(z)}{f(z)} dz = 2\pi \boldsymbol{i} (N_z - N_p),$$

where N_z and N_p are numbers of zeros and poles of f(z). By periodicity, the integral must vanish, so since $N_p = m$, we must have $N_z = 0$.

Up to this point, it remains an open question if elliptic functions exist.

Weierstrass \wp -function

Before discussing construction of \wp -function, let us recall the partial fraction expansion of $\pi \cot(\pi z)$. We knew that this function is \mathbb{Z} -periodic and that it has poles at all integers. It was natural to try to compare it to the function defined by the infinite sum

$$\sum_{n \in \mathbb{Z}} \frac{1}{z+n}$$

The problem is that this sum does not converge, and we had to tweak it by considering instead the sum

$$\frac{1}{z} + \sum_{n \in \mathbb{Z}, n \neq 0} \left(\frac{1}{z+n} - \frac{1}{n} \right).$$

On every compact domain, the *n*-th term of this sum can be bounded by C/n^2 , hence the sum is absolutely and uniformly convergent on compact subsets $\mathbb{C} - \mathbb{Z}$.

The idea behind construction of $\wp(z)$ is to mimic the above to make sense of the divergent infinite double sum

$$\sum_{\omega \in \Lambda} \frac{1}{(z+\omega)^2}.$$

We will follow a similar trick as for the infinite sum of $\pi \cot(\pi z)$, and consider an infinite double sum

$$\frac{1}{z^2} + \sum_{\omega \in \Lambda^*} \left(\frac{1}{(z+\omega)^2} - \frac{1}{\omega^2} \right),\tag{1}$$

where $\Lambda^* := \Lambda - \{(0, 0)\}$. We note that

For the term in the brackets and *z* bounded, we have

$$\frac{1}{(z+\omega)^2} - \frac{1}{\omega^2} = \frac{-z^2 - 2z\omega}{(z+\omega)^2\omega^2} = O(1/\omega^3), \quad \omega \to \infty.$$

It is an easy exercise to verify at this point that the series in (1) is absolutely convergent. The function defined by this series is called **Weierstrass** \wp **function**:

$$\wp(z) := \frac{1}{z^2} + \sum_{(n,m)\neq(0,0)} \left(\frac{1}{(z+n+m\tau)^2} - \frac{1}{(n+m\tau)^2} \right)^2$$

Clearly $\wp(z)$ is even. Due to the uniform convergence, function $\wp(z)$ is meromorphic function with double poles at Λ . For the same reason, derivative of $\wp(z)$ can be computed by term-wise differentiation:

$$\wp'(z) = -2\sum_{\omega \in \Lambda} \frac{1}{(z+\omega)^3}.$$
(2)

Exercise 1. Show that function $\wp(z)$ is double periodic.

Hint: use the facts that $\wp(z)$ is even and $\wp'(z)$ is doubly periodic (due to the invariance of the sum (2) under shifts $z \mapsto z + \omega$

Properties of $\wp(z)$

Since $\wp(z)$ is even, and doubly periodic, it is easy to see that $\wp'(z)$ must vanish at the 'half-periods' $1/2, \tau/2$ and $(1 + \tau)/2$. Since $\wp'(z)$ is of order 3, these must three simple zeros of $\wp'(z)$. In particular, if we set

$$\wp(1/2) = e_2, \quad \wp(\tau/2) = e_2, \quad \wp(\frac{1+\tau}{2}) = e_3,$$

we see that each of the function $\wp(z) - e_i$ has a double zero at the corresponding half-period. This implies that all the number e_1, e_2, e_3 are distinct, since $\wp(z) - c$ can have only two zeros with multiplicities for any given c.

The following theorem provides the key property of the \wp -function.

Theorem 8. The function $(\wp')^2$ is the cubic polynomial in $\wp(z)$:

$$(\wp')^2 = 4(\wp - e_1)(\wp - e_2)(\wp - e_3).$$

Proof. The ratio of the left hand side and $(\wp - e_1)(\wp - e_2)(\wp - e_3)$ is a doubly periodic function with no zeros. Therefore, it must be a constant. Comparing the leading term of the Laurent series of $(\wp')^2$ and the right hand side we find, that the constant is 4.

In a certain sense, \wp and \wp' are universal elliptic functions.

Theorem 9. Every elliptic function f with periods 1 and τ is a rational function of \wp and \wp' .

Proof. Any elliptic function f(z) is a sum of an odd and an even elliptic function:

$$f(z) = f_{\text{odd}}(z) + f_{\text{even}}(z) := \frac{f(z) - f(-z)}{2} + \frac{f(z) + f(-z)}{2}$$

and f_{odd}/\wp' is also even. Therefore, it is enough to prove that any even elliptic function can be represented as a rational function of \wp . The idea is to use $\wp(z)$ to construct an elliptic function with prescribed zeros and poles.

Given any even elliptic F(z), if $a \notin \Lambda$ is a zero of F, then -a is also a zero, and a is equivalent to -a modulo Λ if and only if a is a half period. In the latter case zero at a has even multiplicity.

Dividing *F* by $\wp(z) - \wp(a)$ we would kill these zeros at *a* and *-a*. Repeating this procedure we would kill all the zero in Π , introducing possibly zeros at points of Λ .

Similarly we can kill all poles of *F* outside Λ , by multiplying *F* with $\wp(z) - \wp(b)$. We end with a function which does not have any zeros or poles in $\mathbb{C} - \Lambda$. Such a function can not have a pole and a zero in Π , therefore it must be constant.