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Lecture 3

Examples of holomorphic functions

In the last lecture we saw that being a holomorphic function is a very restrictive condition. The aim of today’s
lecture is to construct a large supply of holomorphic functions.

Polynomials and Rational functions

If f (z) and g(z) are holomorphic function on their domains, then all the functions f + g,f · g,f /g, f ◦ g are also
holomorphic on their domains.

Since f (z) = z is trivially holomorphic on C, as an immediate consequence we conclude:

1. Power functions f (z) = zk , k ∈N are holomorphic on C with

f ′(z) = kzk−1

2. Polynomials P (z) =
∑d
n=0 anz

n are holomorphic on C with

P ′(z) =
d∑
n=0

nanz
n−1.

3. Rational functions P (z)/Q(z), where P (z) and Q(z) are holomorphic everywhere on the domain D :=
{z | Q(z) , 0}. By the Fundamental Theorem of Algebra D is the whole complex plane except for at most
degQ points.

By Fundamental Theorem of Algebra, any polynomial P (z) can be written as P (z) = an(z−w1) . . . (z−wn). Com-
plex numbers {w1, . . . ,wn} are called roots or zeros of P .

Definition 1. If R(z) = P (z)/Q(z) is an irreducible rational function (i.e. P (z) and Q(z) do not have common
factors), then zeros of P (z) are a zeros of R(z), while zeros of Q(z) are poles of R(z). Poles β are characterized by
the property

lim
z→β

R(z) =∞.

Order of a zero β is the number k ∈ N such that R(z)/(z − β)k has a finite non-zero limit as z → β. Similarly
order of a pole β is the number k ∈N such that R(z)(z − β)k has a finite non-zero limit as z→ β.

It is convenient to extend the domain and range of a rational function to the Riemann sphere Ĉ:

R : Ĉ→ Ĉ.

Concretely, to define R(∞) we consider R1(z) := R(1/z) and set R(∞) := R1(0).

Theorem 2 (Partial Fraction Expansion). Given a rational function R(z) with poles β1, . . . ,βk ∈ C, there exist
polynomials G(z) and Gj (z), j = 1, . . . k such that

R(z) = G(z) +
k∑
j=1

Gj

(
1

z − βj

)
.

Proof. Let β be one of the poles of R(z) of order k, i.e.,

R(z) =
R̃(z)

(z − β)k
,

where R̃(β) is a non-zero complex number. Then the rational function

R(z)−
R̃(β)

(z − β)k
=
R̃(z)− R̃(β)

(z − β)k
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has pole at β of order < k.

Iterating this procedure we will eventually eliminate all poles β1, . . . ,β by subtracting expression of the form

k∑
j=1

Gj

(
1

z − βj

)
.

We are left with a rational function

R(z)−
k∑
j=1

Gj

(
1

z − βj

)
with no poles. A rational function with no poles in C is a polynomial G(z), therefore

R(z) = G(z) +
k∑
j=1

Gj

(
1

z − βj

)
.

as required.

The set of rational functions {P (z)/Q(z)} is closed under all basic operations: addition, multiplication, divi-
sion, composition. Therefore we need some new techniques to construct another examples of holomorphic
functions.

Power series

In this section we review the basic theory of power series which is the most important, and essentially, the only
source of holomorphic functions.

Definition 3. A (complex) power series is an expression of the form

∞∑
n=0

anz
n,

where an ∈C. A power series converges at z0 if there exists a finite limit

lim
N→∞

N∑
n=0

anz0
n.

A power series absolutely converges at z0 if there exists a finite limit

lim
N→∞

N∑
n=0

|an||z0|n.

Remark 4. By Cauchy’s convergence test, if a power series absolutely converges at z0, then it converges at z0.

Remark 5. If a power series absolutely converges at z0, then it will also absolutely converge at any z′ with
|z′ | 6 |z0|.

Example 6. The prime example of a power series is the power series representing the exponential function:

ez :=
∞∑
n=0

zn

n!
.

We will prove that the series on the right hand side yields a well-defined holomorphic function C→C− {0}.

Theorem 7. Given a power series
∞∑
n=0

anz
n,

Let 0 6 R 6 +∞ such that
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• If |z| < R the series converges absolutely.

• If |z| > R the series diverges.

Moreover, R is given by Hadamard’s formula:

1/R = limsup |an|1/n.

Number R is called the radius of convergence of
∑
anz

n.

Proof. Let 1/R be the number defined by Hadamard’s formula. Given |z| < R, we can choose ε > 0 such that the
number

r := (1/R+ ε)|z| < 1.

By definition of 1/R we have that for all n large enough

|an|1/n < (1/R+ ε)⇔ |an| < (1/R+ ε)n.

Therefore, for n large enough we have

|an||zn| < ((1/R+ ε)|z|)n = rn.

Hence the ‘tail’ of
∑
|an||z|n is dominated by a convergent geometric series.

The part |z| > R is left as an exercise.

Example 8. For the series defining ez we have

1/R = limsup |1/n!|1/n = 0,

since n! > nn/2. Hence R = +∞ and ez is defined by an absolutely convergent power series.

Any power series is holomorphic in its disc of convergence BR(0).

Theorem 9. The power series f (z) =
∑∞
n=0 anz

n is holomorphic in the open disc BR(0), where R is the radius of con-
vergence. Moreover, f ′(z) is given by the power series with the same radius of convergence obtained from

∑∞
n=0 anz

n

by the term-wise differentiation:

f ′(z) =
∞∑
n=0

nanz
n−1.

Proof. First we note that since limn→∞n
1/n = 0,

limsup |an|1/n = limsup |nan|1/n,

so that
∑
anz

n and
∑
nanz

n have the same radius of convergence, hence so does
∑
nanz

n−1.

Denote

g(z) :=
∞∑
n=0

nanz
n−1

Not take z0 with |z0| < r < R. Our aim is to prove that the difference∣∣∣∣∣ f (z0 + h)− f (z0)
h

− g(z0)
∣∣∣∣∣

can be made arbitrary small by choosing h small enough.

Let us break the series defining f (z) into two parts:

f (z) = SN (z) +EN (z) =

 N∑
n=0

anz
n

+

 ∞∑
n=N+1

anz
n


with N to be determined. Then for h such that |z0 + h| < r we can rewrite

f (z0 + h)− f (z0)
h

− g(z0) =
(
SN (z0 + h)− S(z0)

h
− S ′N (z0)

)
+
(
S ′N (z0)− g(z0)

)
+
(
EN (z0 + h)−EN (z0)

h

)
.
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We want to bound all three terms on the right hand side.

1. Since an−bn = (a−b)(an−1 +an−2b+ · · ·+abn−2 +bn−1) 6 n|a−b|max(|a|, |b|)n−1, we have for the third summand∣∣∣∣∣EN (z0 + h)−EN (z0)
h

∣∣∣∣∣ 6 ∞∑
n=N+1

|an|
∣∣∣∣∣ (z0 + h)n − zn0

h

∣∣∣∣∣ < ∞∑
n=N+1

n|an|rn−1.

The final expression is the tail a convergent series, since g(z) absolutely converges in {z | |z| < R}. Hence given
ε > 0 we can find N1 large enough so that for N > N1∣∣∣∣∣EN (z0 + h)−EN (z0)

h

∣∣∣∣∣ < ε.
2. Next, since limN→∞S

′
N (z0) = g(z0), we can find N2 so that for N > N2

|S ′N (z0)− g(z0)| < ε.

Fix N >max(N1,N2)

3. Finally, since S ′N (z0) is the complex derivative of a polynomial SN (z) at z = z0, we can find δ > 0 such that
for |h| < δ we have ∣∣∣∣∣SN (z0 + h)− S(z0)

h
− S ′N (z0)

∣∣∣∣∣ < ε.
Collecting three inequalities together we find:∣∣∣∣∣ f (z0 + h)− f (z0)

h
− g(z0)

∣∣∣∣∣ < 3ε

Since ε is arbitrary, we conclude that g(z0) is the derivative of f0(z) at z = z0.

Corollary 10. A power series f (z) =
∑
anz

n is infinitely complex differentiable in its disk of convergence, and all its
derivatives could be computed by the term-wise differentiation. In particular

ap =
f (p)(0)
p!

,p ∈N.

Example 11. Applying the above theorem to the series defining ez, we conclude that ez is holomorphic with
(ez)′ = ez.

Exercise 1. Prove that for z,w ∈C we have
ez · ew = ez+w.

Hint: multiply the series defining ez and ew . Using the absolute convergence rearrange the terms in the resulting double-sum.

Since e0 = 1, the above exercise implies that ez · e−z = 1, so ez , 0.

Exercise 2. Define

cos(z) :=
eiiiz + e−iiiz

2
, sin(z) :=

eiiiz − e−iiiz

2iii
.

Then both functions are holomorphic on C and their derivatives are given by

cos′(z) = −sin(z), sin′(z) = cos(z).

Complex logarithm

Multivalued logarithm

Given w = x + iiiy ∈ C let us now try to solve equation w = ez for z. If w = 0, then the equation has no solution,
so let from now on assume w , 0.

• |w|2 = w · w = ez · ez = e2<z. Hence we find <(z) = log |w|, where log = loge : R>0 → R is the usual
logarithmic function.
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• Since e<z = |w|, we have w/ |w| = eiii=z. This equation has infinitely many solutions

=z = ϕ + 2πk,k ∈ Z,

where ϕ := Argw ∈ (−π,π] is the principle branch of the argument of w.

The above observation allows us to define a ‘multivalued function’ (this is not a function in the usual sense)

logw := log |w|+ iiiargw,

where argw is the multivalued argument of w. Any two values of logw differ by a multiple of iii2π.

Principle branch

Often it is inconvenient to work with multivalued functions. To this end we will fix the principle branch of
logarithm by setting

Logw := log |w|+ iiiArgw.

This way logarithm becomes a single valued function C−{0} → C. The main drawback of this definition is that
Log is discontinuous along the negative ray {z = x + iii · 0 | x < 0}: once we move from x + iiiε to x − iiiε, the value
of=Log jumps by 2π. To ‘fix’ this issue, sometimes we will reduce the domain of Log and consider it as a
function

Log: C− {z = x+ iii · 0 | x < 0} → C.

Using Log we can define fractional and even any complex power of a complex number z ∈C−{z = x+iii ·0 | x < 0}:

zw := ewLogz.

Of course, instead of making a cut along the ray {z = x + iii · 0 | x < 0} we could make a cut along any other ray
{z = eiiiϕx | x > 0}.

Remark 12. Choosing a branch of the logarithmic function we inevitably loose the key property

logz+ logw = log(zw).

Instead, this identity holds only up to summands of the form 2πiiik,k ∈N :

Logz+ Logw = Log(zw) + 2πiiik.

More generally, one can define a single-valued logarithmic function in any open simply-connected region Ω ⊂C

provided 0 <Ω. This will be done in future lectures.


