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Lecture 4

Power series continued

Any power series is holomorphic in its disc of convergence Bg(0).

Theorem 1. The power series f(z) =) ;_a,z" is holomorphic in the open disc Bg(0), where R is the radius of con-
vergence. Moreover, f'(z) is given by the power series with the same radius of convergence obtained from ) 7, a,z"
by the term-wise differentiation:

Proof. First we note that since lim,,_,, n'/" = 0,

|1/n

limsup|a,|"" = limsup|na,|'",

so that Y a,z" and ¥ na,z" have the same radius of convergence, hence so does ¥ na,z"1.

g(z):= Zna”zn—l

n=0

Denote

Not take zg with |zg| <7 < R. Our aim is to prove that the difference

f(zo +h]2—f(20) —g(zo)‘

can be made arbitrary small by choosing & small enough.

Let us break the series defining f(z) into two parts:

N 00
f(2) = Sn(2) + Ex(2) =[Zunzn]+[ > ]

n=0 n=N+1

with N to be determined. Then for h such that |zy + h| < ¥ we can rewrite

f (2o +h2—f(20) ~glz0) = (SN(ZO +Z)—5(Zo) —51'\](20))+ (S],\I(ZO)_g(ZO))+(EN(ZO +h}z—EN(Zo) _

We want to bound all three terms on the right hand side.

1. Since a" —b" = (a—b)(@" ' +a"?b+---+ab" 2+ b""!) < nla— b|max(|al, |b])"~!, we have for the third summand

En(zg +h) - En(20) S (zo+h)" -z c n-1
‘ h < Z |an| T < Z n|an|r .
n=N+1 n=N+1

The final expression is the tail a convergent series, since g(z) absolutely converges in {z | |z| < R}. Hence given
€ > 0 we can find N; large enough so that for N > N;

‘EN(ZO +h)—En(z)

h <e€.

2. Next, since limy _,, S{(20) = §(20), we can find N, so that for N > N,

1S (z0) —&(20)l < e.
Fix N > max(Nl,Nz)

3. Finally, since S}(2) is the complex derivative of a polynomial Sy(z) at z = zp, we can find 6 > 0 such that
for |h| < 6 we have

Sn(zo+h)—S(z ,
’ N( 0 ) ( 0) SN(ZO) <e.
C()llectillg tllree illeq ualities t()getller we ﬁIld:
+h) -
f(Zo ]z f(ZO) (Zo) <3¢

Since € is arbitrary, we conclude that g(zg) is the derivative of fy(z) at z = z,. O
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Corollary 2. A power series f(z) = ) a,z" is infinitely complex differentiable in its disk of convergence, and all its
derivatives could be computed by the term-wise differentiation. In particular

(P)(0)
{lp = fT,p IS\R

Example 3. Applying the above theorem to the series defining ¢*, we conclude that ¢* is holomorphic with
(e*) = e,

Exercise 1. Prove that for z,w € C we have

Hint: multiply the series defining e and e". Using the absolute convergence rearrange the terms in the resulting double-sum.

Since ¢? = 1, the above exercise implies that e*-e7? =1, so ¢ # 0.

Exercise 2. Define

eiz 4 o7z eiz _ piz

2 2
Then both functions are holomorphic on C and their derivatives are given by

cos(z) := sin(z) :=

cos’(z) = —sin(z), sin’(z) = cos(z).

Complex logarithm
Multivalued logarithm

Given w = x+iy € C let us solve equation w = e* for z. If w = 0, then the equation has no solution, so from now
on we assume w # 0.

e [w? =w-w = ¢ e = 2’2 Hence we find Re(z) = log|w|, where log = log,: Rsg — R is the usual
logarithmic function.

* Since R = |w|, we have w/|w| = ¢!I™2. This equation has infinitely many solutions
Imz=¢+2nk keZ,

where ¢ := Argw € (-, 1] is the principle branch of the argument of w.

The above observation allows us to define a ‘multivalued function’ (this is not a function in the usual sense)
logw :=log|w| +iargw,

where argw is the multivalued argument of w. Any two values of logw differ by a multiple of i27.

Principle branch

Often it is inconvenient to work with multivalued functions. To this end we will fix the principle branch of
logarithm by setting
Logw :=log|w| +iArgw.

This way logarithm becomes a single valued function C—{0} — C. The main drawback of this definition is that
Log is discontinuous along the negative ray {z=x+1-0 | x < 0}: once we move from x +ie to x —ie, the value
of ImLog jumps by 2. To ‘fix’ this issue, sometimes we will reduce the domain of Log and consider it as a
function

Log: C—{z=x+i-0|x<0}>C.

Using Log we can define fractional and even any complex power of a complex number z € C—{z = x+i-0 | x < 0}:

W .= ewLogz_

Of course, instead of making a cut along the ray {z=x+i-0 | x < 0} we could make a cut along any other ray
{z=¢"Px|x>0}.
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Remark 4. Choosing a branch of the logarithmic function we inevitably loose the key property
logz + logw = log(zw).
Instead, this identity holds only up to summands of the form 2mik, k € N:
Logz + Logw = Log(zw) + 2mik.
More generally, one can define a single-valued logarithmic function in any open simply-connected region QO c C

provided 0 ¢ Q). This will be done in future lectures.

Integration along curves

Definition 5. A parametrized curve is a function z(t) which maps a closed interval [4,b] € R to C. We will
always impose regularity conditions on z(t). We say that the curve is smooth if z’(t) exists and continuous and
Z'(t) = 0 for t € [a,b].

All curves in this course will be continuous and piecewise smooth.

Two parametrizations z: [4,b] — C and z: [a, f] — C are equivalent if there exist a continuously differentiable
bijection (reparametrization) s — #(s) with ¢’(s) > 0 such that:

The equivalence class of a parametrized curve is a plane curve y C C with a fixed orientation.

We define the integral of a complex-valued function f(z) along a curve y parametrized by z: [4,b] — C as:

b
(2)dz:= (z(1))2'(t)dt.
Lf z)dz J; f(z(t))z

Provided f(z) is continuous, the integral on the right-hand side is well-defined.

Proposition 6. The above integral does not depend on parametrization.

Proof. 1f Z(s) := z(t(s)) is another smooth parametrization of the same oriented plane curve then by the change
of variables

b B B
f f<z(t>)z’(t)dt=j f(z(t(s)))z’(t(s>)t'<s>ds=f £ @) (s)ds.

Next is an extremely important example.

Example 7. Let y: [0,27t] — C, y(t) = ¢! be the unit circle traversed counterclockwise. Then

dz 2T et dt m )
j_:J _ :f idt = 2mi.
y z 0 ell‘ 0

Exercise 3. For y: [0,2n] - C, y(t) = e'! the unit circle traversed counterclockwise compute

j zkdz, keZ.
V4

Elementary properties of integration

Complex integration along curves satisfies many familiar properties.

* (Orientation) Given a curve y, let (—y) be the curve traversed in the opposite direction. Then

J:yf(z)dz = —J;f(z)dz
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* (Linearity in functions) Given complex valued functions f(z),g(z) and a, € C we have
J (af(2)+pg(2))dz=a j f(z)dz+p J- 8(z)dz.
Y Y Y
* (Linearity in curves) If y = y; U p, is a subdivision of a curve y, then

Jf(Z)dz: f(z)dz+ | f(z)dz
Y 71 72

Definition 8. Let f(z) be a complex-valued function. A primitive of f(z) is a holomorphic function F(z) such
that F'(z) = f(2).

Theorem 9 (Fundamental Theorem of Calculus). Let F(z) be a primitive of a continuous f(z) in an open region
U c C. Then for any oriented curve y C U with endpoints zy and z;

J f(2)dz = F(z1) - F(zo).
4

Proof. Let z(t): [0,1] — C be a parametrization of y. Then

(o (YdRG)
Lf(Z)dZ—L P (z(t))z(t)dt—fo O 4t = F(z1) - Flzo),

where in the last step we used the usual Fundamental Theorem of Calculus applied to real and imaginary
parts of t — F(z(t)). O

Corollary 10. Function f(z) = 1/z does not have a primitive in C —{0}.

Next theorem provides the converse of the FTC.

Theorem 11. Assume that a continuous complex-valued function f(z): U — C satisfies

L f(z)dz = L f(z)dz

where y,y’ C U are two curves with the same starting and end points. Then f(z) admits a primitive F(z).

Proof. Let Uy C U be a connected component of U, and let z, € Uy be a base point. For any z € U, consider a
curve y from z; to z end define

F(z):= j f(z)dz.
V4

By the Theorem’s assumption, the above definition is independent of curve y.

We claim that F(z) defined by the above formula is holomorphic with F’(z) = f(z). Indeed, by the definition of
F(z) we have:
F(z+h)-F(z2)

1
== | fl2)dz,

Vh
where y}, is any curve connecting z to z+ h. By choosing y}, to be the straight segment connecting z to z+h and
using the continuity of f(z) it is easy to see that the limit of this expression as h € C goes to 0 is f(z). Hence
F(z) is indeed a primitive of f(z) in Uj.
If F(z) is another primitive of f(z) in Uy then F(z) and F(z) differ by a constant since (F(z) — F(z) has vanishing
complex derivative, in particular, its real and imaginary parts are constants.

Applying the above argument to every connected component of U we prove the theorem. O



