Lecture 4

Power series continued

Any power series is holomorphic in its disc of convergence $B_{R}(0)$.
Theorem 1. The power series $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is holomorphic in the open disc $B_{R}(0)$, where R is the radius of convergence. Moreover, $f^{\prime}(z)$ is given by the power series with the same radius of convergence obtained from $\sum_{n=0}^{\infty} a_{n} z^{n}$ by the term-wise differentiation:

$$
f^{\prime}(z)=\sum_{n=0}^{\infty} n a_{n} z^{n-1}
$$

Proof. First we note that since $\lim _{n \rightarrow \infty} n^{1 / n}=0$,

$$
\limsup \left|a_{n}\right|^{1 / n}=\limsup \left|n a_{n}\right|^{1 / n}
$$

so that $\sum a_{n} z^{n}$ and $\sum n a_{n} z^{n}$ have the same radius of convergence, hence so does $\sum n a_{n} z^{n-1}$.
Denote

$$
g(z):=\sum_{n=0}^{\infty} n a_{n} z^{n-1}
$$

Not take z_{0} with $\left|z_{0}\right|<r<R$. Our aim is to prove that the difference

$$
\left|\frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}-g\left(z_{0}\right)\right|
$$

can be made arbitrary small by choosing h small enough.
Let us break the series defining $f(z)$ into two parts:

$$
f(z)=S_{N}(z)+E_{N}(z)=\left(\sum_{n=0}^{N} a_{n} z^{n}\right)+\left(\sum_{n=N+1}^{\infty} a_{n} z^{n}\right)
$$

with N to be determined. Then for h such that $\left|z_{0}+h\right|<r$ we can rewrite

$$
\frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}-g\left(z_{0}\right)=\left(\frac{S_{N}\left(z_{0}+h\right)-S\left(z_{0}\right)}{h}-S_{N}^{\prime}\left(z_{0}\right)\right)+\left(S_{N}^{\prime}\left(z_{0}\right)-g\left(z_{0}\right)\right)+\left(\frac{E_{N}\left(z_{0}+h\right)-E_{N}\left(z_{0}\right)}{h}\right)
$$

We want to bound all three terms on the right hand side.

1. Since $a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+\cdots+a b^{n-2}+b^{n-1}\right) \leqslant n|a-b| \max (|a|,|b|)^{n-1}$, we have for the third summand

$$
\left|\frac{E_{N}\left(z_{0}+h\right)-E_{N}\left(z_{0}\right)}{h}\right| \leqslant \sum_{n=N+1}^{\infty}\left|a_{n}\right|\left|\frac{\left(z_{0}+h\right)^{n}-z_{0}^{n}}{h}\right|<\sum_{n=N+1}^{\infty} n\left|a_{n}\right| r^{n-1}
$$

The final expression is the tail a convergent series, since $g(z)$ absolutely converges in $\{z||z|<R\}$. Hence given $\epsilon>0$ we can find N_{1} large enough so that for $N>N_{1}$

$$
\left|\frac{E_{N}\left(z_{0}+h\right)-E_{N}\left(z_{0}\right)}{h}\right|<\epsilon
$$

2. Next, since $\lim _{N \rightarrow \infty} S_{N}^{\prime}\left(z_{0}\right)=g\left(z_{0}\right)$, we can find N_{2} so that for $N>N_{2}$

$$
\left|S_{N}^{\prime}\left(z_{0}\right)-g\left(z_{0}\right)\right|<\epsilon
$$

Fix $N>\max \left(N_{1}, N_{2}\right)$
3. Finally, since $S_{N}^{\prime}\left(z_{0}\right)$ is the complex derivative of a polynomial $S_{N}(z)$ at $z=z_{0}$, we can find $\delta>0$ such that for $|h|<\delta$ we have

$$
\left|\frac{S_{N}\left(z_{0}+h\right)-S\left(z_{0}\right)}{h}-S_{N}^{\prime}\left(z_{0}\right)\right|<\epsilon .
$$

Collecting three inequalities together we find:

$$
\left|\frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}-g\left(z_{0}\right)\right|<3 \epsilon
$$

Since ϵ is arbitrary, we conclude that $g\left(z_{0}\right)$ is the derivative of $f_{0}(z)$ at $z=z_{0}$.

Corollary 2. A power series $f(z)=\sum a_{n} z^{n}$ is infinitely complex differentiable in its disk of convergence, and all its derivatives could be computed by the term-wise differentiation. In particular

$$
a_{p}=\frac{f^{(p)}(0)}{p!}, p \in \mathbb{N}
$$

Example 3. Applying the above theorem to the series defining e^{z}, we conclude that e^{z} is holomorphic with $\left(e^{z}\right)^{\prime}=e^{z}$.

Exercise 1. Prove that for $z, w \in \mathbb{C}$ we have

$$
e^{z} \cdot e^{w}=e^{z+w}
$$

Hint: multiply the series defining e^{z} and e^{w}. Using the absolute convergence rearrange the terms in the resulting double-sum.
Since $e^{0}=1$, the above exercise implies that $e^{z} \cdot e^{-z}=1$, so $e^{z} \neq 0$.
Exercise 2. Define

$$
\cos (z):=\frac{e^{i z}+e^{-i z}}{2}, \quad \sin (z):=\frac{e^{i z}-e^{-i z}}{2 i}
$$

Then both functions are holomorphic on \mathbb{C} and their derivatives are given by

$$
\cos ^{\prime}(z)=-\sin (z), \quad \sin ^{\prime}(z)=\cos (z)
$$

Complex logarithm

Multivalued logarithm

Given $w=x+\boldsymbol{i} y \in \mathbb{C}$ let us solve equation $w=e^{z}$ for z. If $w=0$, then the equation has no solution, so from now on we assume $w \neq 0$.

- $|w|^{2}=w \cdot \bar{w}=e^{z} \cdot e^{\bar{z}}=e^{2 \mathfrak{R e z}}$. Hence we find $\operatorname{Re}(z)=\log |w|$, where $\log =\log _{e}: \mathbb{R}_{>0} \rightarrow \mathbb{R}$ is the usual logarithmic function.
- Since $e^{\mathfrak{K e z}}=|w|$, we have $w /|w|=e^{i \operatorname{Im} z}$. This equation has infinitely many solutions

$$
\operatorname{Im} z=\varphi+2 \pi k, k \in Z
$$

where $\varphi:=\operatorname{Arg} w \in(-\pi, \pi]$ is the principle branch of the argument of w.
The above observation allows us to define a 'multivalued function' (this is not a function in the usual sense)

$$
\log w:=\log |w|+i \arg w
$$

where $\arg w$ is the multivalued argument of w. Any two values of $\log w$ differ by a multiple of $i 2 \pi$.

Principle branch

Often it is inconvenient to work with multivalued functions. To this end we will fix the principle branch of logarithm by setting

$$
\log w:=\log |w|+\boldsymbol{i} \operatorname{Arg} w
$$

This way logarithm becomes a single valued function $\mathbb{C}-\{0\} \rightarrow \mathbb{C}$. The main drawback of this definition is that Log is discontinuous along the negative ray $\{z=x+\boldsymbol{i} \cdot 0 \mid x<0\}$: once we move from $x+\boldsymbol{i} \epsilon$ to $x-\boldsymbol{i} \epsilon$, the value of ImLog jumps by 2π. To 'fix' this issue, sometimes we will reduce the domain of Log and consider it as a function

$$
\log : \mathbb{C}-\{z=x+\boldsymbol{i} \cdot 0 \mid x \leqslant 0\} \rightarrow \mathbb{C}
$$

Using Log we can define fractional and even any complex power of a complex number $z \in \mathbb{C}-\{z=x+\boldsymbol{i} \cdot 0 \mid x \leqslant 0\}$:

$$
z^{w}:=e^{w \log z}
$$

Of course, instead of making a cut along the ray $\{z=x+\boldsymbol{i} \cdot 0 \mid x \leqslant 0\}$ we could make a cut along any other ray $\left\{z=e^{i \varphi} x \mid x \geqslant 0\right\}$.

Remark 4. Choosing a branch of the logarithmic function we inevitably loose the key property

$$
\log z+\log w=\log (z w)
$$

Instead, this identity holds only up to summands of the form $2 \pi i k, k \in N$:

$$
\log z+\log w=\log (z w)+2 \pi i k
$$

More generally, one can define a single-valued logarithmic function in any open simply-connected region $\Omega \subset \mathbb{C}$ provided $0 \notin \Omega$. This will be done in future lectures.

Integration along curves

Definition 5. A parametrized curve is a function $z(t)$ which maps a closed interval $[a, b] \in \mathbb{R}$ to \mathbb{C}. We will always impose regularity conditions on $z(t)$. We say that the curve is smooth if $z^{\prime}(t)$ exists and continuous and $z^{\prime}(t) \neq 0$ for $t \in[a, b]$.

All curves in this course will be continuous and piecewise smooth.
Two parametrizations $z:[a, b] \rightarrow \mathbb{C}$ and $\widetilde{z}:[\alpha, \beta] \rightarrow \mathbb{C}$ are equivalent if there exist a continuously differentiable bijection (reparametrization) $s \rightarrow t(s)$ with $t^{\prime}(s)>0$ such that:

$$
\widetilde{z}(s)=z(t(s)) .
$$

The equivalence class of a parametrized curve is a plane curve $\gamma \subset \mathbb{C}$ with a fixed orientation.
We define the integral of a complex-valued function $f(z)$ along a curve γ parametrized by $z:[a, b] \rightarrow \mathbb{C}$ as:

$$
\int_{\gamma} f(z) d z:=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t
$$

Provided $f(z)$ is continuous, the integral on the right-hand side is well-defined.
Proposition 6. The above integral does not depend on parametrization.
Proof. If $\widetilde{z}(s):=z(t(s))$ is another smooth parametrization of the same oriented plane curve then by the change of variables

$$
\int_{a}^{b} f(z(t)) z^{\prime}(t) d t=\int_{\alpha}^{\beta} f(z(t(s))) z^{\prime}(t(s)) t^{\prime}(s) d s=\int_{\alpha}^{\beta} f(\widetilde{z}(s)) \vec{z}^{\prime}(s) d s
$$

Next is an extremely important example.
Example 7. Let $\gamma:[0,2 \pi] \rightarrow \mathbb{C}, \gamma(t)=e^{i t}$ be the unit circle traversed counterclockwise. Then

$$
\int_{\gamma} \frac{d z}{z}=\int_{0}^{2 \pi} \frac{i e^{i t} d t}{e^{i t}}=\int_{0}^{2 \pi} i d t=2 \pi i
$$

Exercise 3. For $\gamma:[0,2 \pi] \rightarrow \mathbb{C}, \gamma(t)=e^{i t}$ the unit circle traversed counterclockwise compute

$$
\int_{\gamma} z^{k} d z, \quad k \in \mathbb{Z}
$$

Elementary properties of integration

Complex integration along curves satisfies many familiar properties.

- (Orientation) Given a curve γ, let $(-\gamma)$ be the curve traversed in the opposite direction. Then

$$
\int_{-\gamma} f(z) d z=-\int_{\gamma} f(z) d z
$$

- (Linearity in functions) Given complex valued functions $f(z), g(z)$ and $\alpha, \beta \in \mathbb{C}$ we have

$$
\int_{\gamma}(\alpha f(z)+\beta g(z)) d z=\alpha \int_{\gamma} f(z) d z+\beta \int_{\gamma} g(z) d z
$$

- (Linearity in curves) If $\gamma=\gamma_{1} \cup \gamma_{2}$ is a subdivision of a curve γ, then

$$
\int_{\gamma} f(z) d z=\int_{\gamma_{1}} f(z) d z+\int_{\gamma_{2}} f(z) d z
$$

Definition 8. Let $f(z)$ be a complex-valued function. A primitive of $f(z)$ is a holomorphic function $F(z)$ such that $F^{\prime}(z)=f(z)$.

Theorem 9 (Fundamental Theorem of Calculus). Let $F(z)$ be a primitive of a continuous $f(z)$ in an open region $U \subset \mathbb{C}$. Then for any oriented curve $\gamma \subset U$ with endpoints z_{0} and z_{1}

$$
\int_{\gamma} f(z) d z=F\left(z_{1}\right)-F\left(z_{0}\right)
$$

Proof. Let $z(t):[0,1] \rightarrow \mathbb{C}$ be a parametrization of γ. Then

$$
\int_{\gamma} f(z) d z=\int_{0}^{1} F^{\prime}(z(t)) z^{\prime}(t) d t=\int_{0}^{1} \frac{d F(z(t))}{d t} d t=F\left(z_{1}\right)-F\left(z_{0}\right)
$$

where in the last step we used the usual Fundamental Theorem of Calculus applied to real and imaginary parts of $t \mapsto F(z(t))$.
Corollary 10. Function $f(z)=1 / z$ does not have a primitive in $\mathbb{C}-\{0\}$.
Next theorem provides the converse of the FTC.
Theorem 11. Assume that a continuous complex-valued function $f(z): U \rightarrow \mathbb{C}$ satisfies

$$
\int_{\gamma} f(z) d z=\int_{\gamma^{\prime}} f(z) d z
$$

where $\gamma, \gamma^{\prime} \subset U$ are two curves with the same starting and end points. Then $f(z)$ admits a primitive $F(z)$.
Proof. Let $U_{0} \subset U$ be a connected component of U, and let $z_{0} \in U_{0}$ be a base point. For any $z \in U_{0}$ consider a curve γ from z_{0} to z end define

$$
F(z):=\int_{\gamma} f(z) d z .
$$

By the Theorem's assumption, the above definition is independent of curve γ.
We claim that $F(z)$ defined by the above formula is holomorphic with $F^{\prime}(z)=f(z)$. Indeed, by the definition of $F(z)$ we have:

$$
\frac{F(z+h)-F(z)}{h}=\frac{1}{h} \int_{\gamma_{h}} f(z) d z,
$$

where γ_{h} is any curve connecting z to $z+h$. By choosing γ_{h} to be the straight segment connecting z to $z+h$ and using the continuity of $f(z)$ it is easy to see that the limit of this expression as $h \in C$ goes to 0 is $f(z)$. Hence $F(z)$ is indeed a primitive of $f(z)$ in U_{0}.
If $\tilde{F}(z)$ is another primitive of $f(z)$ in U_{0} then $F(z)$ and $\tilde{F}(z)$ differ by a constant since $(F(z)-\tilde{F}(z)$ has vanishing complex derivative, in particular, its real and imaginary parts are constants.
Applying the above argument to every connected component of U we prove the theorem.

