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Lecture 4

Power series continued

Any power series is holomorphic in its disc of convergence BR(0).

Theorem 1. The power series f (z) =
∑∞
n=0 anz

n is holomorphic in the open disc BR(0), where R is the radius of con-
vergence. Moreover, f ′(z) is given by the power series with the same radius of convergence obtained from

∑∞
n=0 anz

n

by the term-wise differentiation:

f ′(z) =
∞∑
n=0

nanz
n−1.

Proof. First we note that since limn→∞n
1/n = 0,

limsup |an|1/n = limsup |nan|1/n,

so that
∑
anz

n and
∑
nanz

n have the same radius of convergence, hence so does
∑
nanz

n−1.

Denote

g(z) :=
∞∑
n=0

nanz
n−1

Not take z0 with |z0| < r < R. Our aim is to prove that the difference∣∣∣∣∣ f (z0 + h)− f (z0)
h

− g(z0)
∣∣∣∣∣

can be made arbitrary small by choosing h small enough.

Let us break the series defining f (z) into two parts:

f (z) = SN (z) +EN (z) =

 N∑
n=0

anz
n

+

 ∞∑
n=N+1

anz
n


with N to be determined. Then for h such that |z0 + h| < r we can rewrite

f (z0 + h)− f (z0)
h

− g(z0) =
(
SN (z0 + h)− S(z0)

h
− S ′N (z0)

)
+
(
S ′N (z0)− g(z0)

)
+
(
EN (z0 + h)−EN (z0)

h

)
.

We want to bound all three terms on the right hand side.

1. Since an−bn = (a−b)(an−1 +an−2b+ · · ·+abn−2 +bn−1) 6 n|a−b|max(|a|, |b|)n−1, we have for the third summand∣∣∣∣∣EN (z0 + h)−EN (z0)
h

∣∣∣∣∣ 6 ∞∑
n=N+1

|an|
∣∣∣∣∣ (z0 + h)n − zn0

h

∣∣∣∣∣ < ∞∑
n=N+1

n|an|rn−1.

The final expression is the tail a convergent series, since g(z) absolutely converges in {z | |z| < R}. Hence given
ε > 0 we can find N1 large enough so that for N > N1∣∣∣∣∣EN (z0 + h)−EN (z0)

h

∣∣∣∣∣ < ε.
2. Next, since limN→∞S

′
N (z0) = g(z0), we can find N2 so that for N > N2

|S ′N (z0)− g(z0)| < ε.

Fix N >max(N1,N2)

3. Finally, since S ′N (z0) is the complex derivative of a polynomial SN (z) at z = z0, we can find δ > 0 such that
for |h| < δ we have ∣∣∣∣∣SN (z0 + h)− S(z0)

h
− S ′N (z0)

∣∣∣∣∣ < ε.
Collecting three inequalities together we find:∣∣∣∣∣ f (z0 + h)− f (z0)

h
− g(z0)

∣∣∣∣∣ < 3ε

Since ε is arbitrary, we conclude that g(z0) is the derivative of f0(z) at z = z0.
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Corollary 2. A power series f (z) =
∑
anz

n is infinitely complex differentiable in its disk of convergence, and all its
derivatives could be computed by the term-wise differentiation. In particular

ap =
f (p)(0)
p!

,p ∈N.

Example 3. Applying the above theorem to the series defining ez, we conclude that ez is holomorphic with
(ez)′ = ez.

Exercise 1. Prove that for z,w ∈C we have
ez · ew = ez+w.

Hint: multiply the series defining ez and ew . Using the absolute convergence rearrange the terms in the resulting double-sum.

Since e0 = 1, the above exercise implies that ez · e−z = 1, so ez , 0.

Exercise 2. Define

cos(z) :=
eiiiz + e−iiiz

2
, sin(z) :=

eiiiz − e−iiiz

2iii
.

Then both functions are holomorphic on C and their derivatives are given by

cos′(z) = −sin(z), sin′(z) = cos(z).

Complex logarithm

Multivalued logarithm

Given w = x+iiiy ∈C let us solve equation w = ez for z. If w = 0, then the equation has no solution, so from now
on we assume w , 0.

• |w|2 = w · w = ez · ez = e2<z. Hence we find <(z) = log |w|, where log = loge : R>0 → R is the usual
logarithmic function.

• Since e<z = |w|, we have w/ |w| = eiii=z. This equation has infinitely many solutions

=z = ϕ + 2πk,k ∈ Z,

where ϕ := Argw ∈ (−π,π] is the principle branch of the argument of w.

The above observation allows us to define a ‘multivalued function’ (this is not a function in the usual sense)

logw := log |w|+ iiiargw,

where argw is the multivalued argument of w. Any two values of logw differ by a multiple of iii2π.

Principle branch

Often it is inconvenient to work with multivalued functions. To this end we will fix the principle branch of
logarithm by setting

Logw := log |w|+ iiiArgw.

This way logarithm becomes a single valued function C−{0} → C. The main drawback of this definition is that
Log is discontinuous along the negative ray {z = x + iii · 0 | x < 0}: once we move from x + iiiε to x − iiiε, the value
of=Log jumps by 2π. To ‘fix’ this issue, sometimes we will reduce the domain of Log and consider it as a
function

Log: C− {z = x+ iii · 0 | x 6 0} → C.

Using Log we can define fractional and even any complex power of a complex number z ∈C−{z = x+iii ·0 | x 6 0}:

zw := ewLogz.

Of course, instead of making a cut along the ray {z = x + iii · 0 | x 6 0} we could make a cut along any other ray
{z = eiiiϕx | x > 0}.
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Remark 4. Choosing a branch of the logarithmic function we inevitably loose the key property

logz+ logw = log(zw).

Instead, this identity holds only up to summands of the form 2πiiik,k ∈N :

Logz+ Logw = Log(zw) + 2πiiik.

More generally, one can define a single-valued logarithmic function in any open simply-connected region Ω ⊂C

provided 0 <Ω. This will be done in future lectures.

Integration along curves

Definition 5. A parametrized curve is a function z(t) which maps a closed interval [a,b] ∈ R to C. We will
always impose regularity conditions on z(t). We say that the curve is smooth if z′(t) exists and continuous and
z′(t) , 0 for t ∈ [a,b].

All curves in this course will be continuous and piecewise smooth.

Two parametrizations z : [a,b]→ C and z̃ : [α,β]→ C are equivalent if there exist a continuously differentiable
bijection (reparametrization) s→ t(s) with t′(s) > 0 such that:

z̃(s) = z(t(s)).

The equivalence class of a parametrized curve is a plane curve γ ⊂C with a fixed orientation.

We define the integral of a complex-valued function f (z) along a curve γ parametrized by z : [a,b]→C as:∫
γ
f (z)dz :=

∫ b

a
f (z(t))z′(t)dt.

Provided f (z) is continuous, the integral on the right-hand side is well-defined.

Proposition 6. The above integral does not depend on parametrization.

Proof. If z̃(s) := z(t(s)) is another smooth parametrization of the same oriented plane curve then by the change
of variables ∫ b

a
f (z(t))z′(t)dt =

∫ β

α
f (z(t(s)))z′(t(s))t′(s)ds =

∫ β

α
f (̃z(s))̃z′(s)ds.

Next is an extremely important example.

Example 7. Let γ : [0,2π]→C, γ(t) = eiiit be the unit circle traversed counterclockwise. Then∫
γ

dz
z

=
∫ 2π

0

iiieiiitdt

eiiit
=

∫ 2π

0
iiidt = 2πiii.

Exercise 3. For γ : [0,2π]→C, γ(t) = eiiit the unit circle traversed counterclockwise compute∫
γ
zkdz, k ∈Z.

Elementary properties of integration

Complex integration along curves satisfies many familiar properties.

• (Orientation) Given a curve γ , let (−γ) be the curve traversed in the opposite direction. Then∫
−γ
f (z)dz = −

∫
γ
f (z)dz
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• (Linearity in functions) Given complex valued functions f (z), g(z) and α,β ∈C we have∫
γ

(αf (z) + βg(z))dz = α
∫
γ
f (z)dz+ β

∫
γ
g(z)dz.

• (Linearity in curves) If γ = γ1 ∪γ2 is a subdivision of a curve γ , then∫
γ
f (z)dz =

∫
γ1

f (z)dz+
∫
γ2

f (z)dz.

Definition 8. Let f (z) be a complex-valued function. A primitive of f (z) is a holomorphic function F(z) such
that F′(z) = f (z).

Theorem 9 (Fundamental Theorem of Calculus). Let F(z) be a primitive of a continuous f (z) in an open region
U ⊂C. Then for any oriented curve γ ⊂U with endpoints z0 and z1∫

γ
f (z)dz = F(z1)−F(z0).

Proof. Let z(t) : [0,1]→C be a parametrization of γ . Then∫
γ
f (z)dz =

∫ 1

0
F′(z(t))z′(t)dt =

∫ 1

0

dF(z(t))
dt

dt = F(z1)−F(z0),

where in the last step we used the usual Fundamental Theorem of Calculus applied to real and imaginary
parts of t 7→ F(z(t)).

Corollary 10. Function f (z) = 1/z does not have a primitive in C− {0}.

Next theorem provides the converse of the FTC.

Theorem 11. Assume that a continuous complex-valued function f (z) : U →C satisfies∫
γ
f (z)dz =

∫
γ ′
f (z)dz

where γ,γ ′ ⊂U are two curves with the same starting and end points. Then f (z) admits a primitive F(z).

Proof. Let U0 ⊂ U be a connected component of U , and let z0 ∈ U0 be a base point. For any z ∈ U0 consider a
curve γ from z0 to z end define

F(z) :=
∫
γ
f (z)dz.

By the Theorem’s assumption, the above definition is independent of curve γ .

We claim that F(z) defined by the above formula is holomorphic with F′(z) = f (z). Indeed, by the definition of
F(z) we have:

F(z+ h)−F(z)
h

=
1
h

∫
γh

f (z)dz,

where γh is any curve connecting z to z+h. By choosing γh to be the straight segment connecting z to z+h and
using the continuity of f (z) it is easy to see that the limit of this expression as h ∈ C goes to 0 is f (z). Hence
F(z) is indeed a primitive of f (z) in U0.

If F̃(z) is another primitive of f (z) in U0 then F(z) and F̃(z) differ by a constant since (F(z)− F̃(z) has vanishing
complex derivative, in particular, its real and imaginary parts are constants.

Applying the above argument to every connected component of U we prove the theorem.


