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Lecture 6

Index of a point with respect to a curve in C

To formulate further results in complex analysis we will need to review some topology notions for plane curves.

Let y be a closed, possibly self-intersecting piecewise smooth curve in C. Given any point z; not on y we can

define an integral
J‘ dz
y zZ—2 ’

Proposition 1. The above integral equals 2mtin, where n = n(y,zy) is an integer.!

Proof. One might try to prove this formula by considering the primitive of 1/(z—z;), namely log(z—zg). In this

case,
J dz = f (dloglz — zo| +iarg(z — zp)).
y Z—2 y

When the point on the curves travels along y, function log|z—z,| = Re log(z—z) returns to its initial value, while
arg(z —zp) = Imlog(z — zp) accumulates several multiples of 27t. Although this argument gives some intuition
regarding the proposition, it is not rigorous: log(z — z) being a multi-valued function is not a well-defined
primitive of 1/(z— zg).

To give a rigorous proof, define

h(t)::f 204t telab)

z(t) - zg
where z(t),t € [a,D] is a parametrization of y. Clearly
Z'(t) - d

-z — @l —=) =0

K (t) =

The latter implies that e Mt)(z(t) - z) is constant in t, in particular

z(a) -z

Since the curve is closed, we have z(a) = z(b), in particular e"b) = 1. This implies that there exists integer n

such that p
J 2~ h(b) = 2min.
y z— ZO

O

Definition 2. The number n = n(y, zy) which we defined in the above proposition is called the index of point z;

with respect to curve y
dz
n(y,zo) := J 72
Y 0

The number n(y,z;) measures how many times the curve y winds around z; in positive (counterclockwise)
direction. For this reason, often n(y, zy) is also often called winding number.

Example 3. Let y be the unit circle traveled in the positive direction. We know that
d .
2 _ o,
y 2
Hence n(y,0) = 1.

Let us record several properties of the winding number

Proposition 4. The winding numbers satisfy the following properties:

L This is a manifestation of the fact that the first cohomology group of C —({zg} is Z: HYC-{z}; Z2)=2.
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1. n(=y,z0) = —n(y,2o)
2. If y € Br(w), and z & Bgr(w), then n(y,zy) = 0.

3. As a function of z, the index n(y,zy) is constant in every region cut out by y and is zero in the unbounded
region.

Proof. Part (1.) is trivial, since reversing the orientation of a curve y, we also reverse the sign of the integral
defining n(y, zg).

To prove part (2.) we note that by our assumption f(z) = 1/(z — z) is holomorphic in Bg(w), therefore by
Cauchy’s theorem integral of f(z) along any closed loop in Bg(w) is zero.

To prove the last part (3.) on could argue in two ways. One proof would just to note that n(y, zy) is a continuous
function of z;, and since the index takes only integer values it has to be locally constant.

The other, a bit more formal proof might go like this. Let 4,b € C be two points in one connected component
cut out be y. Then we can connect 4 to b by a chain of segments which does not intersect y. By induction we
can assume that this chain actually consists of one segment, and we want to prove that

n(y,a) = n(y,b)@L(zi—a—ﬁ)dz:O.

It follows from the homework exercise that the integrand g(z) = ﬁ - zl—b has a primitive in the complement of

the segment joining a and b: C—{ta+(1—¢)b |t € [0,1]}. Therefore, since g(z) has a primitive in a neighbourhood
of y, by Fundamental Theorem of Calculus we conclude that

J;g(z)dz =0.

The last part of (3.) follows from (2.). Indeed, we can find a large disk D such that ¥ ¢ D. Then for any w ¢ D
we have n(y,w) = 0. Since n(y,w) is locally constant, the same is true for the entire unbounded region cut out
by y. O

Remark 5. Let y; be a smooth family of closed curves. That is there exists a joint smooth parametrization:
z(s,t): [0,1] x [a,b] > C

such that for any fixed s € [0, 1], the curve y;, is described by z(s¢, t). Assume that point zj is not in the range
of z(s,t). Then

n(yo,20) = n(y1,20)-
Indeed n(ys, zp) being a continuous function of s has to be locally constant. Therefore n(y,z¢) = n(y1,2¢).

This shows that the winding number n(y, z) is invariant under smooth homotopy of the curve y.

Cauchy’s integral formula

Last time we have proved the following result.

Theorem 6. [Improved Cauchy’s theorem in the disk] Let f be a holomorphic function in a region D’ obtained from
an open disk D by removing a finite set of points {C;}. If f(z) satisfies the conditions

ling(z—C]-)f(z):O, ji=1..n
z2—(;j

then

Lf(z)dz: 0

for any curve y € D’

Now we use this theorem together with the notion of a winding number to get Cauchy’s integral formula.
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Theorem 7. Suppose that f is holomorphic in an open disk D, and let y to be a closed curve in D. Then for any z;
not on y we have

f(2)
2 e “———dz = f(zo)n(y,2).
Proof. Fix zy and consider function
F(Z) — f(z)_f(zo).
zZ—2

F(z) is holomorphic in D—{z;} by usual differentiation rules, and since f(z) is continuous at z;, F(z) also satisfies

lim F(z)(z—zg) = 0.

zZ—2)

Therefore we can apply Theorem 6 to F(z) in D — {zy} and conclude that

Jroe L

Equivalently we can rewrite this identity as

27'(1 yZ- zO 27t

f(z) 1 dz
(z0)5— .
= f(20) J;

But the latter term is exactly f(zg)n(y,zp). O

In a special case n(y,zy) = 1 we have

f2)

27 yZ- zo

f(z0) = 5=

zZ,

or after renaming variables in a more common way:

)= L f©)
27 ¥ C-
It is this formula which is usually referred to as Cauchy’s integral formula. We must remember that it is valid
only when n(y,z) =1 and that we have proved it only when f(z) is analytic in a disk D.

The key point of this theorem is that we can recover completely function f(z) only knowing it on the curve y.

Example 8. Let y be the unit circle oriented clockwise, then we have
eZ
J —dz=2mi-e’ = 2mi.
z

Example 9. Consider the integral f 2l=2 1+ =22 Decomposing the function under the integral into partial fractions

2dz i i
j 2:J (__—)dz_z 21 —1i-2mi = 0.
|z|=2 1+z lzl=2\2t1 -1

we find:




