Lecture 6

Index of a point with respect to a curve in \mathbb{C}

To formulate further results in complex analysis we will need to review some topology notions for plane curves. Let γ be a closed, possibly self-intersecting piecewise smooth curve in \mathbb{C}. Given any point z_{0} not on γ we can define an integral

$$
\int_{\gamma} \frac{d z}{z-z_{0}}
$$

Proposition 1. The above integral equals $2 \pi i n$, where $n=n\left(\gamma, z_{0}\right)$ is an integer. ${ }^{1}$
Proof. One might try to prove this formula by considering the primitive of $1 /\left(z-z_{0}\right)$, namely $\log \left(z-z_{0}\right)$. In this case,

$$
\int_{\gamma} \frac{d z}{z-z_{0}}=\int_{\gamma}\left(d \log \left|z-z_{0}\right|+i \arg \left(z-z_{0}\right)\right)
$$

When the point on the curves travels along γ, function $\log \left|z-z_{0}\right|=\mathfrak{R e} \log \left(z-z_{0}\right)$ returns to its initial value, while $\arg \left(z-z_{0}\right)=\operatorname{Im} \log \left(z-z_{0}\right)$ accumulates several multiples of 2π. Although this argument gives some intuition regarding the proposition, it is not rigorous: $\log \left(z-z_{0}\right)$ being a multi-valued function is not a well-defined primitive of $1 /\left(z-z_{0}\right)$.
To give a rigorous proof, define

$$
h(t):=\int_{a}^{t} \frac{z^{\prime}(t)}{z(t)-z_{0}} d t, \quad t \in[a, b]
$$

where $z(t), t \in[a, b]$ is a parametrization of γ. Clearly

$$
h^{\prime}(t)=\frac{z^{\prime}(t)}{z(t)-z_{0}} \Longleftrightarrow \frac{d}{d t}\left(e^{-h(t)}\left(z(t)-z_{0}\right)\right)=0 .
$$

The latter implies that $e^{-h(t)}\left(z(t)-z_{0}\right)$ is constant in t, in particular

$$
e^{h(t)}=\frac{z(t)-z_{0}}{z(a)-z_{0}}
$$

Since the curve is closed, we have $z(a)=z(b)$, in particular $e^{h(b)}=1$. This implies that there exists integer n such that

$$
\int_{\gamma} \frac{d z}{z-z_{0}}=h(b)=2 \pi i n
$$

Definition 2. The number $n=n\left(\gamma, z_{0}\right)$ which we defined in the above proposition is called the index of point z_{0} with respect to curve γ

$$
n\left(\gamma, z_{0}\right):=\int_{\gamma} \frac{d z}{z-z_{0}}
$$

The number $n\left(\gamma, z_{0}\right)$ measures how many times the curve γ winds around z_{0} in positive (counterclockwise) direction. For this reason, often $n\left(\gamma, z_{0}\right)$ is also often called winding number.
Example 3. Let γ be the unit circle traveled in the positive direction. We know that

$$
\int_{\gamma} \frac{d z}{z}=2 \pi i
$$

Hence $n(\gamma, 0)=1$.
Let us record several properties of the winding number
Proposition 4. The winding numbers satisfy the following properties:

[^0]1. $n\left(-\gamma, z_{0}\right)=-n\left(\gamma, z_{0}\right)$
2. If $\gamma \subset B_{R}(w)$, and $z_{0} \notin B_{R}(w)$, then $n\left(\gamma, z_{0}\right)=0$.
3. As a function of z_{0}, the index $n\left(\gamma, z_{0}\right)$ is constant in every region cut out by γ and is zero in the unbounded region.

Proof. Part (1.) is trivial, since reversing the orientation of a curve γ, we also reverse the sign of the integral defining $n\left(\gamma, z_{0}\right)$.

To prove part (2.) we note that by our assumption $f(z)=1 /\left(z-z_{0}\right)$ is holomorphic in $B_{R}(w)$, therefore by Cauchy's theorem integral of $f(z)$ along any closed loop in $B_{R}(w)$ is zero.
To prove the last part (3.) on could argue in two ways. One proof would just to note that $n\left(\gamma, z_{0}\right)$ is a continuous function of z_{0}, and since the index takes only integer values it has to be locally constant.
The other, a bit more formal proof might go like this. Let $a, b \in \mathbb{C}$ be two points in one connected component cut out be γ. Then we can connect a to b by a chain of segments which does not intersect γ. By induction we can assume that this chain actually consists of one segment, and we want to prove that

$$
n(\gamma, a)=n(\gamma, b) \Longleftrightarrow \int_{\gamma}\left(\frac{1}{z-a}-\frac{1}{z-b}\right) d z=0
$$

It follows from the homework exercise that the integrand $g(z)=\frac{1}{z-a}-\frac{1}{z-b}$ has a primitive in the complement of the segment joining a and $b: \mathbb{C}-\{t a+(1-t) b \mid t \in[0,1]\}$. Therefore, since $g(z)$ has a primitive in a neighbourhood of γ, by Fundamental Theorem of Calculus we conclude that

$$
\int_{\gamma} g(z) d z=0
$$

The last part of (3.) follows from (2.). Indeed, we can find a large disk D such that $\gamma \subset D$. Then for any $w \notin D$ we have $n(\gamma, w)=0$. Since $n(\gamma, w)$ is locally constant, the same is true for the entire unbounded region cut out by γ.

Remark 5. Let γ_{s} be a smooth family of closed curves. That is there exists a joint smooth parametrization:

$$
z(s, t):[0,1] \times[a, b] \rightarrow \mathbb{C}
$$

such that for any fixed $s_{0} \in[0,1]$, the curve $\gamma_{s_{0}}$ is described by $z\left(s_{0}, t\right)$. Assume that point z_{0} is not in the range of $z(s, t)$. Then

$$
n\left(\gamma_{0}, z_{0}\right)=n\left(\gamma_{1}, z_{0}\right)
$$

Indeed $n\left(\gamma_{s}, z_{0}\right)$ being a continuous function of s has to be locally constant. Therefore $n\left(\gamma_{0}, z_{0}\right)=n\left(\gamma_{1}, z_{0}\right)$.
This shows that the winding number $n\left(\gamma, z_{0}\right)$ is invariant under smooth homotopy of the curve γ.

Cauchy's integral formula

Last time we have proved the following result.
Theorem 6. [Improved Cauchy's theorem in the disk] Let f be a holomorphic function in a region D' obtained from an open disk D by removing a finite set of points $\left\{\zeta_{i}\right\}$. If $f(z)$ satisfies the conditions

$$
\lim _{z \rightarrow \zeta_{j}}\left(z-\zeta_{j}\right) f(z)=0, \quad j=1, \ldots n
$$

then

$$
\int_{\gamma} f(z) d z=0
$$

for any curve $\gamma \in D^{\prime}$.
Now we use this theorem together with the notion of a winding number to get Cauchy's integral formula.

Theorem 7. Suppose that f is holomorphic in an open disk D, and let γ to be a closed curve in D. Then for any z_{0} not on γ we have

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-z_{0}} d z=f\left(z_{0}\right) n\left(\gamma, z_{0}\right)
$$

Proof. Fix z_{0} and consider function

$$
F(z):=\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

$F(z)$ is holomorphic in $D-\left\{z_{0}\right\}$ by usual differentiation rules, and since $f(z)$ is continuous at $z_{0}, F(z)$ also satisfies

$$
\lim _{z \rightarrow z_{0}} F(z)\left(z-z_{0}\right)=0
$$

Therefore we can apply Theorem 6 to $F(z)$ in $D-\left\{z_{0}\right\}$ and conclude that

$$
\int_{\gamma} F(z)=\int_{\gamma} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z=0
$$

Equivalently we can rewrite this identity as

$$
\frac{1}{2 \pi \boldsymbol{i}} \int_{\gamma} \frac{f(z)}{z-z_{0}} d z=f\left(z_{0}\right) \frac{1}{2 \pi \boldsymbol{i}} \int_{\gamma} \frac{d z}{z-z_{0}}
$$

But the latter term is exactly $f\left(z_{0}\right) n\left(\gamma, z_{0}\right)$.
In a special case $n\left(\gamma, z_{0}\right)=1$ we have

$$
f\left(z_{0}\right)=\frac{1}{2 \pi \boldsymbol{i}} \int_{\gamma} \frac{f(z)}{z-z_{0}} d z
$$

or after renaming variables in a more common way:

$$
f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta-z} d \zeta
$$

It is this formula which is usually referred to as Cauchy's integral formula. We must remember that it is valid only when $n(\gamma, z)=1$ and that we have proved it only when $f(z)$ is analytic in a disk D.
The key point of this theorem is that we can recover completely function $f(z)$ only knowing it on the curve γ.
Example 8. Let γ be the unit circle oriented clockwise, then we have

$$
\int_{\gamma} \frac{e^{z}}{z} d z=2 \pi i \cdot e^{0}=2 \pi i
$$

Example 9. Consider the integral $\int_{|z|=2} \frac{2 d z}{1+z^{2}}$. Decomposing the function under the integral into partial fractions we find:

$$
\int_{|z|=2} \frac{2 d z}{1+z^{2}}=\int_{|z|=2}\left(\frac{\boldsymbol{i}}{z+\boldsymbol{i}}-\frac{\boldsymbol{i}}{z-\boldsymbol{i}}\right) d z=\boldsymbol{i} \cdot 2 \pi \boldsymbol{i}-\boldsymbol{i} \cdot 2 \pi \boldsymbol{i}=0
$$

[^0]: ${ }^{1}$ This is a manifestation of the fact that the first cohomology group of $\mathbb{C}-\left\{z_{0}\right\}$ is $\mathbb{Z}: H^{1}\left(\mathbb{C}-\left\{z_{0}\right\} ; \mathbb{Z}\right)=\mathbb{Z}$.

