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Lecture 6

Index of a point with respect to a curve in C

To formulate further results in complex analysis we will need to review some topology notions for plane curves.

Let γ be a closed, possibly self-intersecting piecewise smooth curve in C. Given any point z0 not on γ we can
define an integral ∫

γ

dz
z − z0

.

Proposition 1. The above integral equals 2πiiin, where n = n(γ,z0) is an integer.1

Proof. One might try to prove this formula by considering the primitive of 1/(z−z0), namely log(z−z0). In this
case, ∫

γ

dz
z − z0

=
∫
γ

(d log |z − z0|+ iiiarg(z − z0)).

When the point on the curves travels along γ , function log |z−z0| =< log(z−z0) returns to its initial value, while
arg(z − z0) == log(z − z0) accumulates several multiples of 2π. Although this argument gives some intuition
regarding the proposition, it is not rigorous: log(z − z0) being a multi-valued function is not a well-defined
primitive of 1/(z − z0).

To give a rigorous proof, define

h(t) :=
∫ t

a

z′(t)
z(t)− z0

dt, t ∈ [a,b]

where z(t), t ∈ [a,b] is a parametrization of γ . Clearly

h′(t) =
z′(t)

z(t)− z0
⇐⇒ d

dt

(
e−h(t)(z(t)− z0)

)
= 0.

The latter implies that e−h(t)(z(t)− z0) is constant in t, in particular

eh(t) =
z(t)− z0

z(a)− z0
.

Since the curve is closed, we have z(a) = z(b), in particular eh(b) = 1. This implies that there exists integer n
such that ∫

γ

dz
z − z0

= h(b) = 2πiiin.

Definition 2. The number n = n(γ,z0) which we defined in the above proposition is called the index of point z0
with respect to curve γ

n(γ,z0) :=
∫
γ

dz
z − z0

The number n(γ,z0) measures how many times the curve γ winds around z0 in positive (counterclockwise)
direction. For this reason, often n(γ,z0) is also often called winding number.

Example 3. Let γ be the unit circle traveled in the positive direction. We know that∫
γ

dz
z

= 2πiii.

Hence n(γ,0) = 1.

Let us record several properties of the winding number

Proposition 4. The winding numbers satisfy the following properties:

1This is a manifestation of the fact that the first cohomology group of C− {z0} is Z: H1(C− {z0}; Z) = Z.
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1. n(−γ,z0) = −n(γ,z0)

2. If γ ⊂ BR(w), and z0 < BR(w), then n(γ,z0) = 0.

3. As a function of z0, the index n(γ,z0) is constant in every region cut out by γ and is zero in the unbounded
region.

Proof. Part (1.) is trivial, since reversing the orientation of a curve γ , we also reverse the sign of the integral
defining n(γ,z0).

To prove part (2.) we note that by our assumption f (z) = 1/(z − z0) is holomorphic in BR(w), therefore by
Cauchy’s theorem integral of f (z) along any closed loop in BR(w) is zero.

To prove the last part (3.) on could argue in two ways. One proof would just to note that n(γ,z0) is a continuous
function of z0, and since the index takes only integer values it has to be locally constant.

The other, a bit more formal proof might go like this. Let a,b ∈ C be two points in one connected component
cut out be γ . Then we can connect a to b by a chain of segments which does not intersect γ . By induction we
can assume that this chain actually consists of one segment, and we want to prove that

n(γ,a) = n(γ,b)⇐⇒
∫
γ

( 1
z − a

− 1
z − b

)
dz = 0.

It follows from the homework exercise that the integrand g(z) = 1
z−a −

1
z−b has a primitive in the complement of

the segment joining a and b: C−{ta+(1−t)b |t ∈ [0,1]}. Therefore, since g(z) has a primitive in a neighbourhood
of γ , by Fundamental Theorem of Calculus we conclude that∫

γ
g(z)dz = 0.

The last part of (3.) follows from (2.). Indeed, we can find a large disk D such that γ ⊂ D. Then for any w < D
we have n(γ,w) = 0. Since n(γ,w) is locally constant, the same is true for the entire unbounded region cut out
by γ .

Remark 5. Let γs be a smooth family of closed curves. That is there exists a joint smooth parametrization:

z(s, t) : [0,1]× [a,b]→C

such that for any fixed s0 ∈ [0,1], the curve γs0 is described by z(s0, t). Assume that point z0 is not in the range
of z(s, t). Then

n(γ0, z0) = n(γ1, z0).

Indeed n(γs, z0) being a continuous function of s has to be locally constant. Therefore n(γ0, z0) = n(γ1, z0).

This shows that the winding number n(γ,z0) is invariant under smooth homotopy of the curve γ .

Cauchy’s integral formula

Last time we have proved the following result.

Theorem 6. [Improved Cauchy’s theorem in the disk] Let f be a holomorphic function in a region D ′ obtained from
an open disk D by removing a finite set of points {ζi}. If f (z) satisfies the conditions

lim
z→ζj

(z − ζj )f (z) = 0, j = 1, . . .n,

then ∫
γ
f (z)dz = 0

for any curve γ ∈D ′ .

Now we use this theorem together with the notion of a winding number to get Cauchy’s integral formula.
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Theorem 7. Suppose that f is holomorphic in an open disk D, and let γ to be a closed curve in D. Then for any z0
not on γ we have

1
2πiii

∫
γ

f (z)
z − z0

dz = f (z0)n(γ,z0).

Proof. Fix z0 and consider function

F(z) :=
f (z)− f (z0)
z − z0

.

F(z) is holomorphic inD−{z0} by usual differentiation rules, and since f (z) is continuous at z0, F(z) also satisfies

lim
z→z0

F(z)(z − z0) = 0.

Therefore we can apply Theorem 6 to F(z) in D − {z0} and conclude that∫
γ
F(z) =

∫
γ

f (z)− f (z0)
z − z0

dz = 0.

Equivalently we can rewrite this identity as

1
2πiii

∫
γ

f (z)
z − z0

dz = f (z0)
1

2πiii

∫
γ

dz
z − z0

.

But the latter term is exactly f (z0)n(γ,z0).

In a special case n(γ,z0) = 1 we have

f (z0) =
1

2πiii

∫
γ

f (z)
z − z0

dz,

or after renaming variables in a more common way:

f (z) =
1

2πiii

∫
γ

f (ζ)
ζ − z

dζ.

It is this formula which is usually referred to as Cauchy’s integral formula. We must remember that it is valid
only when n(γ,z) = 1 and that we have proved it only when f (z) is analytic in a disk D.

The key point of this theorem is that we can recover completely function f (z) only knowing it on the curve γ .

Example 8. Let γ be the unit circle oriented clockwise, then we have∫
γ

ez

z
dz = 2πiii · e0 = 2πiii.

Example 9. Consider the integral
∫
|z|=2

2dz
1+z2 . Decomposing the function under the integral into partial fractions

we find: ∫
|z|=2

2dz
1 + z2 =

∫
|z|=2

(
iii
z+ iii

− iii
z − iii

)
dz = iii · 2πiii − iii · 2πiii = 0.


