Lecture 6

Index of a point with respect to a curve in $\mathbb C$

To formulate further results in complex analysis we will need to review some *topology notions* for plane curves. Let γ be a closed, possibly self-intersecting piecewise smooth curve in \mathbb{C} . Given any point z_0 not on γ we can define an integral

$$\int_{\gamma} \frac{dz}{z-z_0}.$$

Proposition 1. The above integral equals $2\pi i n$, where $n = n(\gamma, z_0)$ is an integer.¹

Proof. One might try to prove this formula by considering the primitive of $1/(z-z_0)$, namely $\log(z-z_0)$. In this case,

$$\int_{\gamma} \frac{dz}{z - z_0} = \int_{\gamma} (d \log |z - z_0| + i \arg(z - z_0)).$$

When the point on the curves travels along γ , function $\log |z-z_0| = \Re c \log(z-z_0)$ returns to its initial value, while $\arg(z-z_0) = \operatorname{Im} \log(z-z_0)$ accumulates several multiples of 2π . Although this argument gives some intuition regarding the proposition, it is not rigorous: $\log(z-z_0)$ being a multi-valued function is not a well-defined primitive of $1/(z-z_0)$.

To give a rigorous proof, define

$$h(t) := \int_{a}^{t} \frac{z'(t)}{z(t) - z_0} dt, \quad t \in [a, b]$$

where $z(t), t \in [a, b]$ is a parametrization of γ . Clearly

$$h'(t) = \frac{z'(t)}{z(t) - z_0} \longleftrightarrow \frac{d}{dt} \left(e^{-h(t)} (z(t) - z_0) \right) = 0.$$

The latter implies that $e^{-h(t)}(z(t) - z_0)$ is constant in *t*, in particular

$$e^{h(t)} = \frac{z(t) - z_0}{z(a) - z_0}.$$

Since the curve is closed, we have z(a) = z(b), in particular $e^{h(b)} = 1$. This implies that there exists integer *n* such that

$$\int_{\gamma} \frac{dz}{z - z_0} = h(b) = 2\pi i n.$$

Definition 2. The number $n = n(\gamma, z_0)$ which we defined in the above proposition is called *the index of point* z_0 *with respect to curve* γ

$$n(\gamma, z_0) := \int_{\gamma} \frac{dz}{z - z_0}$$

The number $n(\gamma, z_0)$ measures how many times the curve γ winds around z_0 in positive (counterclockwise) direction. For this reason, often $n(\gamma, z_0)$ is also often called *winding number*.

Example 3. Let γ be the unit circle traveled in the positive direction. We know that

$$\int_{\gamma} \frac{dz}{z} = 2\pi \boldsymbol{i}.$$

Hence $n(\gamma, 0) = 1$.

Let us record several properties of the winding number

Proposition 4. The winding numbers satisfy the following properties:

¹This is a manifestation of the fact that the first cohomology group of $\mathbb{C} - \{z_0\}$ is \mathbb{Z} : $H^1(\mathbb{C} - \{z_0\}; \mathbb{Z}) = \mathbb{Z}$.

- 1. $n(-\gamma, z_0) = -n(\gamma, z_0)$
- 2. If $\gamma \subset B_R(w)$, and $z_0 \notin B_R(w)$, then $n(\gamma, z_0) = 0$.
- 3. As a function of z_0 , the index $n(\gamma, z_0)$ is constant in every region cut out by γ and is zero in the unbounded region.

Proof. Part (1.) is trivial, since reversing the orientation of a curve γ , we also reverse the sign of the integral defining $n(\gamma, z_0)$.

To prove part (2.) we note that by our assumption $f(z) = 1/(z - z_0)$ is holomorphic in $B_R(w)$, therefore by Cauchy's theorem integral of f(z) along any closed loop in $B_R(w)$ is zero.

To prove the last part (3.) on could argue in two ways. One proof would just to note that $n(\gamma, z_0)$ is a continuous function of z_0 , and since the index takes only integer values it has to be locally constant.

The other, a bit more formal proof might go like this. Let $a, b \in \mathbb{C}$ be two points in one connected component cut out be γ . Then we can connect a to b by a chain of segments which does not intersect γ . By induction we can assume that this chain actually consists of one segment, and we want to prove that

$$n(\gamma, a) = n(\gamma, b) \Longleftrightarrow \int_{\gamma} \left(\frac{1}{z-a} - \frac{1}{z-b}\right) dz = 0.$$

It follows from the homework exercise that the integrand $g(z) = \frac{1}{z-a} - \frac{1}{z-b}$ has a primitive in the complement of the segment joining *a* and *b*: $\mathbb{C} - \{ta + (1-t)b \mid t \in [0,1]\}$. Therefore, since g(z) has a primitive in a neighbourhood of γ , by Fundamental Theorem of Calculus we conclude that

$$\int_{\gamma} g(z) dz = 0.$$

The last part of (3.) follows from (2.). Indeed, we can find a large disk *D* such that $\gamma \subset D$. Then for any $w \notin D$ we have $n(\gamma, w) = 0$. Since $n(\gamma, w)$ is locally constant, the same is true for the entire unbounded region cut out by γ .

Remark 5. Let γ_s be a smooth family of closed curves. That is there exists a joint smooth parametrization:

$$z(s,t)\colon [0,1]\times [a,b]\to \mathbb{C}$$

such that for any fixed $s_0 \in [0, 1]$, the curve γ_{s_0} is described by $z(s_0, t)$. Assume that point z_0 is not in the range of z(s, t). Then

$$n(\gamma_0, z_0) = n(\gamma_1, z_0).$$

Indeed $n(\gamma_s, z_0)$ being a continuous function of *s* has to be locally constant. Therefore $n(\gamma_0, z_0) = n(\gamma_1, z_0)$. This shows that the winding number $n(\gamma, z_0)$ is invariant under *smooth homotopy* of the curve γ .

Cauchy's integral formula

Last time we have proved the following result.

Theorem 6. [Improved Cauchy's theorem in the disk] Let f be a holomorphic function in a region D' obtained from an open disk D by removing a finite set of points $\{\zeta_i\}$. If f(z) satisfies the conditions

$$\lim_{z \to \zeta_j} (z - \zeta_j) f(z) = 0, \qquad j = 1, \dots n$$

then

$$\int_{\gamma} f(z) dz = 0$$

for any curve $\gamma \in D'$.

Now we use this theorem together with the notion of a winding number to get Cauchy's integral formula.

Theorem 7. Suppose that f is holomorphic in an open disk D, and let γ to be a closed curve in D. Then for any z_0 not on γ we have

$$\frac{1}{2\pi i}\int_{\gamma}\frac{f(z)}{z-z_0}dz=f(z_0)n(\gamma,z_0).$$

Proof. Fix z_0 and consider function

$$F(z) := \frac{f(z) - f(z_0)}{z - z_0}.$$

F(z) is holomorphic in $D-\{z_0\}$ by usual differentiation rules, and since f(z) is continuous at z_0 , F(z) also satisfies

$$\lim_{z \to z_0} F(z)(z - z_0) = 0.$$

Therefore we can apply Theorem 6 to F(z) in $D - \{z_0\}$ and conclude that

$$\int_{\gamma} F(z) = \int_{\gamma} \frac{f(z) - f(z_0)}{z - z_0} dz = 0.$$

Equivalently we can rewrite this identity as

$$\frac{1}{2\pi i}\int_{\gamma}\frac{f(z)}{z-z_0}dz=f(z_0)\frac{1}{2\pi i}\int_{\gamma}\frac{dz}{z-z_0}.$$

But the latter term is exactly $f(z_0)n(\gamma, z_0)$.

In a special case $n(\gamma, z_0) = 1$ we have

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz,$$

or after renaming variables in a more common way:

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

It is this formula which is usually referred to as *Cauchy's integral formula*. We must remember that it is valid only when $n(\gamma, z) = 1$ and that we have proved it only when f(z) is analytic in a disk *D*.

The key point of this theorem is that we can recover completely function f(z) only knowing it on the curve γ .

Example 8. Let γ be the unit circle oriented clockwise, then we have

$$\int_{\gamma} \frac{e^z}{z} dz = 2\pi \mathbf{i} \cdot e^0 = 2\pi \mathbf{i}.$$

Example 9. Consider the integral $\int_{|z|=2} \frac{2dz}{1+z^2}$. Decomposing the function under the integral into partial fractions we find:

$$\int_{|z|=2} \frac{2dz}{1+z^2} = \int_{|z|=2} \left(\frac{\mathbf{i}}{z+\mathbf{i}} - \frac{\mathbf{i}}{z-\mathbf{i}} \right) dz = \mathbf{i} \cdot 2\pi \mathbf{i} - \mathbf{i} \cdot 2\pi \mathbf{i} = 0.$$