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Lecture 8

Last time we have derived several important consequences of Cauchy’s integral formula. In particular, we
have proved that a holomorphic function has infinitely many derivatives given by a formula:

f (n)(z) =
n!

2πiii

∫
γ

f (ζ)
(ζ − z)n+1 dζ, n ∈N.

Next, we used this formula to derive Cauchy’s estimates:

|f (n)(a)| 6Mn!R−n

for a function holomorphic in BR(a) with |f (z)| <M.

As a consequence, any bounded holomorphic function must be a constant (Liouville’s theorem). This fact gives
a simple proof of the Fundamental Theorem of Algebra.

Taylor’s series

Today we will further use Cauchy’s integral formula to prove that any function f (z) holomorphic in an open
disk BR(a) can be represented by a convergent power series in that disk. In other words, f (z) is analytic in
BR(a). As we know from previous lectures, any power series is holomorphic inside its disk of convergence. For
this reason, analytic is often used as a synonym for holomorphic.

Assume that f (z) is holomorphic in BR(a) and choose any r < R. Function f (z) is continuous in the closed disk
BR(a), so we can define

Mr := max
|z−a|6r

|f (z)|.

Therefore, by Cauchy’s estimate, we can conclude that

|f (n)(a)| 6Mrn!r−n.

Now let us form a power series

S(z) :=
∞∑
n=0

an(z − a)n, an =
f (n)(a)
n!

(1)

It follows from Cauchy’s estimates that
limsup
n→∞

a1/n
n 6 1/r,

therefore series (1) is absolutely convergent in Br (a). Since r < R is arbitrary, this series is also convergent in
BR(a). Hence, to any function f (z) holomorphic in BR(a) we can associate a power series (1) convergent in
BR(a).

Question. Does series S(z) represent function f (z) in the disk BR(a)?

Today we will demonstrate that the answer is yes, also proving a refined version of the identity f (z) = S(z).

Taylor’s theorem

Given any function f (z) holomorphic in an open region U , we can form a new holomorphic function in a
punctured region:

f1(z) :=
f (z)− f (a)
z − a

, z , a.

This function has a removable singularity at z = a. Therefore, by continuity, we can set f1(a) := limz→a f1(z) =
f ′(a) and get a function holomorphic in the whole U .

We can repeat this process and define a sequence of holomorphic functions

fk+1(z) :=
fk(z)− fk(a)

z − a
, fk+1(a) = f ′k (a).

Unwinding definitions of fk(z), we arrive at a formula for f (z):

f (z) = f (a) + f1(a)(z − a) + f2(a)(z − a)2 + · · ·+ fn−1(a)(z − a)n−1 + fn(z)(z − a)n. (2)
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Remark 1. Note that in every term except for the last one we have fk evaluated at a, while the last term fn is
evaluated at z.

Differentiating equation (2) k times k = 1 . . . ,n, and substituting z = a, we find fk(a) = k!f (k)(a), and arrive at
the following

Theorem 2 (Taylor’s theorem). Given function f (z) holomorphic in an open set U , point a ∈ U and n ∈N, there
exists a holomorphic function fn(z) such that

f (z) = f (a) +
f ′(a)

1!
(z − a) + · · ·+

f (n−1)(a)
(n− 1)!

(z − a)n−1 + fn(z)(z − a)n. (3)

This theorem gives a finite development of any holomorphic function. One of the advantages of this formula
is that it makes sense everywhere in the whole domain of holomorphicity of U . In most cases this identity
turns out to be more useful and precise then the Taylor’s infinite series due to an explicit expression for fn(z).

Let C be a circle enclosing z and a.

Proposition 3. Function fn(z) of (3) is given by a contour integral

fn(z) =
1

2πiii

∫
C

f (ζ)
(ζ − a)n(ζ − z)

dζ.

Proof. Cauchy’s integral formula applied to fn(z) states that

fn(z) =
1

2πiii

∫
C

fn(ζ)
ζ − z

dζ.

Now, let us use (3) to express fn(ζ) as

fn(ζ) =
f (ζ)

(ζ − a)n
−
n−1∑
k=0

f (k)(a)
k!(ζ − a)n−k

Substituting fn(ζ) back into Cauchy’s formula, we will have one integral containing f (ζ), which yields the
expected term

1
2πiii

∫
C

f (ζ)
(ζ − a)n(ζ − z)

dζ.

The remaining terms up to a constant multiple are all of the form:

Ir (a) :=
∫
C

1
(ζ − z)(ζ − a)r

dζ

Exercise 1. Prove that all Ir (a) vanish as long as both z and a are inside of the circle C.

Hint: For r = 1 this is essentially the statement of a homework assignment. For r > 1 we have I ′r (a) = rIr+1(a)

This exercise finishes the proof.

Proposition 3 allows us to get a good control of the reminder term in the finite Taylor’s formula.

Taylor’s series

Assume that f (z) is holomorphic in an open disk BR(a). Fix R′ < R. Let us again start with the Cauchy’s integral
formula representing f (z) in BR′ (a):

f (z) =
1

2πiii

∫
C

f (ζ)
ζ − z

dζ,

where C is a circle of radius R′ centered at a. Fix r < R′ and assume that |z − a| < r.
We can rewrite the factor under the integral as follows

1
ζ − z

=
1

(ζ − a)− (z − a)
=

1
ζ − a

· 1
1− z−a

ζ−a
=

1
ζ − a

∞∑
n=0

( z − a
ζ − a

)n
,
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where we used the fact that as long as |z − a| < r, we have∣∣∣∣∣ z − aζ − a

∣∣∣∣∣ < r
R′
< 1,

and the infinite series converges absolutely and uniformly in Br (a). Therefore we can plug this series into the
Cauchy’s formula and interchange summation and integration:

f (z) =
1

2πiii

∫
C

f (ζ)
ζ − z

dζ

=
1

2πiii

∫
C

 f (ζ)
ζ − a

∞∑
n=0

( z − a
ζ − a

)ndζ
=

1
2πiii

∞∑
n=0

(z − a)n
∫
C

f (ζ)
(ζ − a)n+1 dζ

=
∞∑
n=0

(z − a)n
f (n)(a)
n!

,

where in the last identity we used Cauchy’s integral formula for higher derivatives. Therefore everywhere in
Br (a) function f (z) is given by an absolutely convergent series

f (z) =
∞∑
n=0

an(z − a)n, an =
f (n)(a)
n!

.

Since r < R′ < R are arbitrary, the same formula holds everywhere in BR(a).

Theorem 4. If function f (z) is holomorphic in BR(a), then everywhere in BR(a) function f (z) is represented by its
Taylor series and convergence is absolute and uniform in every Br (a) ( BR(a).

Corollary 5. If the power series representing f (z) around z = a has radius of convergence R, then f (z) can not be
extended to a holomorphic function in a neighbourhood of BR(a).

Rigidity of holomorphic functions

Lemma 6. If a holomorphic function f (z) has f (k)(a) = 0 for k = 0, . . .n− 1, then there exists a factorization

f (z) = (z − a)ng(z)

where g(z) is a holomorphic function.

Proof. This lemma immediately follows from the finite Taylor’s formula.

Definition 7. The maximal n such that there exists a factorization

f (z) = (z − a)ng(z)

with holomorphic g(z), is called the order of the zero at a. If a is a zero of order n then g(a) , 0.

Theorem 8. If function f (z) is holomorphic in an open connected region U ⊂C and there exists a sequence of points
{an} converging to a ∈U , such that an , a and f (an) = 0, then f (z) is identically zero in U .

Proof. Step 1. First we prove that all derivatives of f (z) at z = a are zero. Indeed let n ∈N be the largest number
such that f (k)(a) = 0 for all k < n. If n =∞, then we are done. Otherwise, by the previous lemma we can write
f (z) as

f (z) = (z − a)ng(z).

Since f (an) = 0, and an , a, we have g(an) = 0. Moreover, as an→ a, and g(z) is continuous, g(a) = 0. Therefore,
we can further factor g(z) as g(z) = (z − a)h(z). This contradicts maximality of n.

Step 2. In a disk around point z = a function f (z) is represented by an identically zero power series, therefore
f (z) is also identically zero in that disk.

Step 3. It remains to prove that f (z) is identically zero in the whole U . To prove it, we introduce the set

W = {z0 ∈U | all derivatives f (n)(z0) are zero}.

Clearly a ∈W . Moreover W is closed by continuity and open, since if z0 ∈W , then f (z) is identically zero in a
small disk around z0. Therefore W =U .
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Corollary 9. If holomorphic functions f (z) and g(z) coincide on a subset Z ⊂ U which has an accumulation point
a ∈U then f (z) and g(z) coincide everywhere in U .


