Lecture 9

Recall that point $a \in Z \subset \mathbb{C}$ is called an isolated point of Z if there exists a small neighbourhood $B_{\epsilon}(a)$ such that $B_{\epsilon}(a) \cap Z=\{a\}$. Otherwise, point a is an accumulation point of Z, meaning that there exists a sequence of points $a_{n} \in Z, a_{n} \neq a$ such that $a_{n} \rightarrow a$.
Last time we have proved
Theorem 1. If holomorphic functions $f(z)$ and $g(z)$ coincide on a subset $Z \subset U$ which has an accumulation point $a \in U$ then $f(z)$ and $g(z)$ coincide everywhere in U.

Remark 2. Some specific important situations when the above theorem can be applied are: when Z is an open disk, or an arc.

As a consequence of the above theorem, we can conclude that if $f(z)$ is a nonzero holomorphic function then its zeros are isolated. Moreover, if z_{0} is a zero of such function, then there exists a number $n \geqslant 0$ such that $f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=\cdots=f^{(n-1)}\left(z_{0}\right)=0$ while $f^{(n)}\left(z_{0}\right) \neq 0$. Equivalently, $f(z)$ can be factored as

$$
\begin{equation*}
f(z)=\left(z-z_{0}\right)^{n} g(z), \quad g\left(z_{0}\right) \neq 0 \tag{1}
\end{equation*}
$$

where $g(z)$ is a holomorphic function.

Singularities of holomorphic functions

Let $f(z)$ be a holomorphic function defined in a neighbourhood U of point z_{0}, except for point z_{0} itself. We will say that $f(z)$ has an isolated singularity at z_{0}. The purpose of today's lecture to provide a characterization of different types of isolated singularities.

Removable singularities

Definition 3. Function $f(z)$ has a removable singularity at z_{0} if

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=0 \tag{2}
\end{equation*}
$$

In one of the previous lectures we have proved that if has a removable singularity at z_{0}, then, we can define $f\left(z_{0}\right)$ in such a way that $f(z)$ is holomorphic in the whole region U. In particular, there must exist a limit

$$
\lim _{z \rightarrow z_{0}} f(z)
$$

and this limit recovers the value $f\left(z_{0}\right)$.
Example 4. For a holomorphic function $f(z)$ such that $f\left(z_{0}\right)=0$, a function $F(z):=\frac{f(z)}{z-z_{0}}$ has a removable singularity at $z=z_{0}$. The value of $F(z)$ can be computed via the limit:

$$
\lim _{z \rightarrow z_{0}} F(z)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=f^{\prime}\left(z_{0}\right) .
$$

Poles

Definition 5. We will say that function $f(z)$ has a pole at z_{0} if

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}} f(z)=\infty, \tag{3}
\end{equation*}
$$

i.e., for any $R>0$ there exists $\epsilon>0$ such that for any $z \in B_{\epsilon}\left(z_{0}\right)-\left\{z_{0}\right\}$ we have $|f(z)|>R$.

Example 6. Function $f(z)=1 / z$ has a pole at $z=0$. More generally, any rational function represented by an irreducible fraction $\frac{P(z)}{Q(z)}$ has poles at zeros of $Q(z)$.

Remark 7. While conditions (2) and (3) are not mutually exclusive apriori, theorem on removable singularities guarantees that removable singularity can't be a pole.

Now, we get a refined local characterization of poles. Assuming that $f(z)$ has a pole at $z=z_{0}$, we can find a small neighbourhood U around z_{0} such that $f(z) \neq 0$ in U. Then function $h(z):=1 / f(z)$ is holomorphic in $U-\left\{z_{0}\right\}$ and satisfies

$$
\lim _{z \rightarrow z_{0}} h(z)=0
$$

Therefore $h(z)$ has removable singularity at $z=z_{0}$ with $h\left(z_{0}\right)=0$. Now, using factorization (1), we can write $h(z)$ as

$$
h(z)=\left(z-z_{0}\right)^{n} g(z)
$$

where $g\left(z_{0}\right) \neq 0$. In particular, we can write $g(z)=1 / F(z)$, where $F(z)$ is holomorphic in U and $F\left(z_{0}\right) \neq 0$.
Switching back to $f(z)$ we find that

$$
f(z)=\frac{F(z)}{\left(z-z_{0}\right)^{n}}
$$

where $F\left(z_{0}\right) \neq 0$. Therefore, we have proved the following:
Theorem 8. If function $f(z)$ has a pole at z_{0}, then there exists a holomorphic function $F(z)$ and a number $n \in \mathbb{N}$ such that

$$
\begin{equation*}
f(z)=\frac{F(z)}{\left(z-z_{0}\right)^{n}} \tag{4}
\end{equation*}
$$

Number n is called the order of pole z_{0}.
Remark 9. To be precise, we have proved that (4) holds in a small neighbourhood of z_{0}. But we can extend it to the whole U just by setting $F(z):=f(z)\left(z-z_{0}\right)^{n}$.
Definition 10. Function $f(z)$ is meromorphic in U if it is holomorphic in U except for isolated poles.
Example 11. Any rational function is meromorphic in \mathbb{C}.
If function $f(z)$ has a pole of order n at z_{0}, we can use Taylor's formula to expand $F(z):=\left(z-z_{0}\right)^{n} f(z)$:

$$
F(z)=a_{n}+a_{n-1}\left(z-z_{0}\right)+\cdots+a_{1}\left(z-z_{0}\right)^{n-1}+\varphi(z)\left(z-z_{0}\right)^{n}
$$

where $\varphi(z)$ is holomorphic in U. Hence, in $U-\left\{z_{0}\right\}$ we have

$$
\begin{equation*}
f(z)=\frac{a_{N}}{\left(z-z_{0}\right)^{N}}+\cdots+\frac{a_{1}}{\left(z-z_{0}\right)}+\varphi(z) \tag{5}
\end{equation*}
$$

where the boxed terms form the singular or principle part of $f(z)$ at $z=z_{0}$. Representation (5) allows to work with poles via their principle parts as if we were working with ordinary rational functions.

Example 12. Function $f(z)=\frac{1}{1-e^{-z}}$ has a simple (i.e., of order 1) pole at $z=0$. Indeed, by Taylor's formula

$$
e^{-z}=1-z \varphi(z)
$$

where $\varphi(z)$ is holomorphic, $\varphi(0) \neq 0$, therefore we have a representation of $f(z)$

$$
f(z)=\frac{1 / \varphi(z)}{z}
$$

with holomorphic numerator.

Essential singularity

Definition 13. If an isolated singularity z_{0} is neither a removable singularity, nor a pole, then we say that z_{0} is an essential singularity.

In other words, if there is no finite or infinite limit

$$
\lim _{z \rightarrow z_{0}} f(z)
$$

then z_{0} is an essential singularity.

Example 14. Function $f(z)=e^{1 / z}$ has an essential singularity at $z=0$. Indeed, as z tends to zero along positive real ray, $f(z)$ approaches ∞, while as z tends to zero along negative real ray, $f(z)$ approaches 0 .

Any holomorphic function at an essential singularity has an extremely wild behavior.
Theorem 15 (Great Picard's theorem). If a holomorphic function $f(z)$ has an essential singularity at a point z_{0}, then on any punctured neighborhood of $z_{0}, f(z)$ takes on all possible complex values, with at most a single exception, infinitely often.

This is a difficult theorem, and we do not have necessary techniques to prove it. Instead, we will prove a much weaker statement of a similar spirit:

Theorem 16 (Casorati-Weierstrass). If a holomorphic function $f(z)$ has an essential singularity at a point z_{0}, then the image of any punctured neighborhood of z_{0} is everywhere dense in \mathbb{C}.

Proof. Assume the contrary: that is there exists $\zeta \in \mathbb{C}$ and $\epsilon>0$ such that $f\left(U-\left\{z_{0}\right\}\right)$ does not intersect $B_{\epsilon}(\zeta)$.
Let us introduce a new function $g(z)=\frac{1}{f(z)-\zeta}$. Since the values of $f(z)$ in $U-\left\{z_{0}\right\}$ are separated from ζ, we will have that $g(z)$ is bounded in $U-\left\{z_{0}\right\}$. Therefore z_{0} is a removable singularity of $g(z)$ and we can define $g\left(z_{0}\right)$ which makes $g(z)$ holomorphic in U.
Then $f(z)=\frac{1}{g(z)}+\zeta$ has either a removable singularity (if $g\left(z_{0}\right) \neq 0$) or a pole (if $g\left(z_{0}\right)=0$) at z_{0} which contradicts our assumption that z_{0} is an essential singularity.

Isolated singularity at ∞

All of the above discussion makes sense for a function $f(z)$ holomorphic in a neighbourhood of $\infty \in \hat{\mathbb{C}}$ on the extended complex plane ${ }^{1}$. In this case, we can consider a function $F(z):=f(1 / z)$ which would have an isolated singularity at $z=0$.

Definition 17. We will say that a function $f(z)$ has a removable/pole/essential singularity at ∞ if $F(z):=f(1 / z)$ has removable/pole/essential singularity at $z=0$.

Example 18. A polynomial $P(z)$ of positive degree has a pole at ∞ of order $\operatorname{deg} P$.
Rational function $P(z) / Q(z)$ has a removable singularity at ∞ if and only if $\operatorname{deg} P \leqslant \operatorname{deg} Q$.
Theorem 19. The meromorphic functions in the extended complex plane $\hat{\mathbb{C}}$ are rational functions.
Proof. First, we claim that a meromorphic function in $\hat{\mathbb{C}}$ has a finite number of poles. Indeed, by definition, poles are isolated, and any discrete subset of $\hat{\mathbb{C}}$ must be finite, since $\hat{\mathbb{C}}$ is compact.
Once we know that the number of poles is finite, we can essentially repeat the proof of the theorem about partial fraction expansion of a rational function.
Let $\left\{z_{1}, \ldots z_{N}\right\}$ be the set of poles of $f(z)$. Denote by $p_{i}(z)$ principle part of a pole z_{i}. Clearly $p_{i}(z)$ is a rational function. Therefore, we can write $f(z)$ as

$$
f(z)=Q(z)+g(z) .
$$

where $Q(z)=\sum p_{i}(z)$ is a rational function, and $g(z)$ is a holomorphic function (meromorphic function without poles) defined in the entire extended complex plane $\hat{\mathbb{C}}$. Since $\hat{\mathbb{C}}$ is compact, $g(z)$ must be bounded, so Liouville's theorem implies that $g(z)$ is constant.

[^0]
[^0]: ${ }^{1}$ Recall that a neighbourhood of ∞ is a complement of a compact set $K \subset \mathbb{C} \subset \mathbb{C} \cup\{\infty\}$.

