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Lecture 9

Recall that point a ∈ Z ⊂C is called an isolated point of Z if there exists a small neighbourhood Bε(a) such that
Bε(a)∩Z = {a}. Otherwise, point a is an accumulation point of Z, meaning that there exists a sequence of points
an ∈ Z, an , a such that an→ a.

Last time we have proved

Theorem 1. If holomorphic functions f (z) and g(z) coincide on a subset Z ⊂ U which has an accumulation point
a ∈U then f (z) and g(z) coincide everywhere in U .

Remark 2. Some specific important situations when the above theorem can be applied are: when Z is an open
disk, or an arc.

As a consequence of the above theorem, we can conclude that if f (z) is a nonzero holomorphic function then
its zeros are isolated. Moreover, if z0 is a zero of such function, then there exists a number n > 0 such that
f (z0) = f ′(z0) = · · · = f (n−1)(z0) = 0 while f (n)(z0) , 0. Equivalently, f (z) can be factored as

f (z) = (z − z0)ng(z), g(z0) , 0, (1)

where g(z) is a holomorphic function.

Singularities of holomorphic functions

Let f (z) be a holomorphic function defined in a neighbourhood U of point z0, except for point z0 itself. We
will say that f (z) has an isolated singularity at z0. The purpose of today’s lecture to provide a characterization
of different types of isolated singularities.

Removable singularities

Definition 3. Function f (z) has a removable singularity at z0 if

lim
z→z0

(z − z0)f (z) = 0. (2)

In one of the previous lectures we have proved that if has a removable singularity at z0, then, we can define
f (z0) in such a way that f (z) is holomorphic in the whole region U . In particular, there must exist a limit

lim
z→z0

f (z)

and this limit recovers the value f (z0).

Example 4. For a holomorphic function f (z) such that f (z0) = 0, a function F(z) := f (z)
z−z0

has a removable
singularity at z = z0. The value of F(z) can be computed via the limit:

lim
z→z0

F(z) = lim
z→z0

f (z)− f (z0)
z − z0

= f ′(z0).

Poles

Definition 5. We will say that function f (z) has a pole at z0 if

lim
z→z0

f (z) =∞, (3)

i.e., for any R > 0 there exists ε > 0 such that for any z ∈ Bε(z0)− {z0} we have |f (z)| > R.

Example 6. Function f (z) = 1/z has a pole at z = 0. More generally, any rational function represented by an
irreducible fraction P (z)

Q(z) has poles at zeros of Q(z).

Remark 7. While conditions (2) and (3) are not mutually exclusive apriori, theorem on removable singularities
guarantees that removable singularity can’t be a pole.



Yury Ustinovskiy Complex Variables MATH-GA.2451-001 Fall 2019

Now, we get a refined local characterization of poles. Assuming that f (z) has a pole at z = z0, we can find
a small neighbourhood U around z0 such that f (z) , 0 in U . Then function h(z) := 1/f (z) is holomorphic in
U − {z0} and satisfies

lim
z→z0

h(z) = 0.

Therefore h(z) has removable singularity at z = z0 with h(z0) = 0. Now, using factorization (1), we can write
h(z) as

h(z) = (z − z0)ng(z),

where g(z0) , 0. In particular, we can write g(z) = 1/F(z), where F(z) is holomorphic in U and F(z0) , 0.

Switching back to f (z) we find that

f (z) =
F(z)

(z − z0)n
,

where F(z0) , 0. Therefore, we have proved the following:

Theorem 8. If function f (z) has a pole at z0, then there exists a holomorphic function F(z) and a number n ∈N such
that

f (z) =
F(z)

(z − z0)n
. (4)

Number n is called the order of pole z0.

Remark 9. To be precise, we have proved that (4) holds in a small neighbourhood of z0. But we can extend it
to the whole U just by setting F(z) := f (z)(z − z0)n.

Definition 10. Function f (z) is meromorphic in U if it is holomorphic in U except for isolated poles.

Example 11. Any rational function is meromorphic in C.

If function f (z) has a pole of order n at z0, we can use Taylor’s formula to expand F(z) := (z − z0)nf (z):

F(z) = an + an−1(z − z0) + · · ·+ a1(z − z0)n−1 +ϕ(z)(z − z0)n,

where ϕ(z) is holomorphic in U . Hence, in U − {z0} we have

f (z) =
aN

(z − z0)N
+ · · ·+ a1

(z − z0)
+ϕ(z) (5)

where the boxed terms form the singular or principle part of f (z) at z = z0. Representation (5) allows to work
with poles via their principle parts as if we were working with ordinary rational functions.

Example 12. Function f (z) =
1

1− e−z
has a simple (i.e., of order 1) pole at z = 0. Indeed, by Taylor’s formula

e−z = 1− zϕ(z),

where ϕ(z) is holomorphic, ϕ(0) , 0, therefore we have a representation of f (z)

f (z) =
1/ϕ(z)
z

with holomorphic numerator.

Essential singularity

Definition 13. If an isolated singularity z0 is neither a removable singularity, nor a pole, then we say that z0
is an essential singularity.

In other words, if there is no finite or infinite limit

lim
z→z0

f (z),

then z0 is an essential singularity.
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Example 14. Function f (z) = e1/z has an essential singularity at z = 0. Indeed, as z tends to zero along positive
real ray, f (z) approaches∞, while as z tends to zero along negative real ray, f (z) approaches 0.

Any holomorphic function at an essential singularity has an extremely wild behavior.

Theorem 15 (Great Picard’s theorem). If a holomorphic function f (z) has an essential singularity at a point z0,
then on any punctured neighborhood of z0, f (z) takes on all possible complex values, with at most a single exception,
infinitely often.

This is a difficult theorem, and we do not have necessary techniques to prove it. Instead, we will prove a much
weaker statement of a similar spirit:

Theorem 16 (Casorati-Weierstrass). If a holomorphic function f (z) has an essential singularity at a point z0, then
the image of any punctured neighborhood of z0 is everywhere dense in C.

Proof. Assume the contrary: that is there exists ζ ∈C and ε > 0 such that f (U − {z0}) does not intersect Bε(ζ).

Let us introduce a new function g(z) = 1
f (z)−ζ . Since the values of f (z) in U − {z0} are separated from ζ, we will

have that g(z) is bounded in U − {z0}. Therefore z0 is a removable singularity of g(z) and we can define g(z0)
which makes g(z) holomorphic in U .

Then f (z) = 1
g(z) +ζ has either a removable singularity (if g(z0) , 0) or a pole (if g(z0) = 0) at z0 which contradicts

our assumption that z0 is an essential singularity.

Isolated singularity at∞

All of the above discussion makes sense for a function f (z) holomorphic in a neighbourhood of ∞ ∈ Ĉ on the
extended complex plane1. In this case, we can consider a function F(z) := f (1/z) which would have an isolated
singularity at z = 0.

Definition 17. We will say that a function f (z) has a removable/pole/essential singularity at∞ if F(z) := f (1/z)
has removable/pole/essential singularity at z = 0.

Example 18. A polynomial P (z) of positive degree has a pole at∞ of order degP .

Rational function P (z)/Q(z) has a removable singularity at∞ if and only if degP 6 degQ.

Theorem 19. The meromorphic functions in the extended complex plane Ĉ are rational functions.

Proof. First, we claim that a meromorphic function in Ĉ has a finite number of poles. Indeed, by definition,
poles are isolated, and any discrete subset of Ĉ must be finite, since Ĉ is compact.

Once we know that the number of poles is finite, we can essentially repeat the proof of the theorem about
partial fraction expansion of a rational function.

Let {z1, . . . zN } be the set of poles of f (z). Denote by pi(z) principle part of a pole zi . Clearly pi(z) is a rational
function. Therefore, we can write f (z) as

f (z) =Q(z) + g(z).

where Q(z) =
∑
pi(z) is a rational function, and g(z) is a holomorphic function (meromorphic function without

poles) defined in the entire extended complex plane Ĉ. Since Ĉ is compact, g(z) must be bounded, so Liouville’s
theorem implies that g(z) is constant.

1Recall that a neighbourhood of∞ is a complement of a compact set K ⊂C ⊂C∪ {∞}.


