Midterm

Your final score for the midterm is $\min \left(50, \sum_{i=1}^{6} s_{i}\right)$ where $s_{i} \in[0 ; 10]$ is your score for the i-th problem. To get the full credit, write complete, detailed solutions. You may use any of the results from the class without a proof, but you have to state them explicitly.

Problem 1. Which of the following are holomorphic functions of $z=x+i y$
a) $f(z)=x^{2}+i y^{2}$;
b) $f(z)=x^{2}-y^{2}+i 2 x y$;
c) $f(z)=e^{y}(\cos x+i \sin x)$?

Problem 2. Describe the image of the complex half-plane $\{\operatorname{Re}(z)>0\}$ under the map $f(z)=\sqrt{z^{2}+1}$, where \sqrt{w} is the principle branch of the square root of $w \in \mathbb{C}-(-\infty ; 0]$

Problem 3. Function $f(z)$ is holomorphic in $\mathbb{C}-\{0\}$, has a pole of order 1 at $z=0$, and there exists $R>0$ such that

$$
|f(z)|<|z|^{3 / 2}
$$

as long as $|z|>R$. Classify all such functions $f(z)$.
Problem 4. For a continuous function $\varphi: \overline{\mathbb{D}} \rightarrow \mathbb{C}$ let us introduce a "non-holomorphicity measure"

$$
m(\varphi)=\inf _{f} \sup _{z \in \overline{\mathbb{D}}}|\varphi(z)-f(z)|,
$$

where the infimum is taken over all functions f holomorphic in a neighbourhood of \mathbb{D}. Compute $m(\varphi)$ for $\varphi(z)=|z|$.

Problem 5. Find the number of zeros of the polynomial $q(z)=z^{6}-2 z^{4}+6 z^{3}+z+1$ inside the unit disk \mathbb{D}.
Problem 6. Let $f(z): \mathbb{C} \rightarrow \mathbb{C}$ be an entire holomorphic function. Assume that $f(z)$ has finitely many zeros in \mathbb{C}. Prove that there exist a polynomial $P(z)$ and an entire holomorphic function $g(z)$ such that

$$
f(z)=P(z) e^{g(z)} .
$$

