Midterm

Your final score for the midterm is $\min(50, \sum_{i=1}^{6} s_i)$ where $s_i \in [0; 10]$ is your score for the *i*-th problem. To get the full credit, write complete, detailed solutions. You may use any of the results from the class without a proof, but you have to state them explicitly.

Problem 1. Which of the following are holomorphic functions of z = x + iy

a)
$$f(z) = x^{2} + iy^{2}$$
;
b) $f(z) = x^{2} - y^{2} + i2xy$;
c) $f(z) = e^{y}(\cos x + i\sin x)$?

Problem 2. Describe the image of the complex half-plane { $\Re c(z) > 0$ } under the map $f(z) = \sqrt{z^2 + 1}$, where \sqrt{w} is the *principle branch* of the square root of $w \in \mathbb{C} - (-\infty; 0]$

Problem 3. Function f(z) is holomorphic in $\mathbb{C} - \{0\}$, has a pole of order 1 at z = 0, and there exists R > 0 such that

 $|f(z)| < |z|^{3/2}$

as long as |z| > R. Classify all such functions f(z).

Problem 4. For a continuous function $\varphi \colon \overline{\mathbb{D}} \to \mathbb{C}$ let us introduce a "non-holomorphicity measure"

$$m(\varphi) = \inf_{f} \sup_{z \in \overline{\mathbb{D}}} |\varphi(z) - f(z)|,$$

where the infimum is taken over all functions f holomorphic in a neighbourhood of \mathbb{D} . Compute $m(\varphi)$ for $\varphi(z) = |z|$.

Problem 5. Find the number of zeros of the polynomial $q(z) = z^6 - 2z^4 + 6z^3 + z + 1$ inside the unit disk D.

Problem 6. Let f(z): $\mathbb{C} \to \mathbb{C}$ be an entire holomorphic function. Assume that f(z) has finitely many zeros in \mathbb{C} . Prove that there exist a polynomial P(z) and an entire holomorphic function g(z) such that

$$f(z) = P(z)e^{g(z)}.$$