## Midterm

Problem 1. Which of the following are holomorphic functions of $z=x+i y$
a) $f(z)=x^{2}+i y^{2}$;
b) $f(z)=x^{2}-y^{2}+i 2 x y$;
c) $f(z)=e^{y}(\cos x+\boldsymbol{i} \sin x)$ ?

Answer: Only b) is holomorphic in $\mathbb{C}$.
Solution: a) and c) do not satisfy Cauchy-Riemann equations in $\mathbb{C}$

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad u=\operatorname{Re}(f), v=\operatorname{Im}(f) .
$$

Indeed, for a) we have

$$
\frac{\partial u}{\partial x}=2 x \neq 2 y=\frac{\partial v}{\partial y}
$$

Similarly, for c) we have

$$
\frac{\partial u}{\partial x}=-e^{y} \sin x \neq e^{y} \sin x=\frac{\partial v}{\partial y}
$$

On the other hand, function in b) is $f(z)=z^{2}$ which is obviously holomorphic.
Problem 2. Describe the image of the complex half-plane $\{\operatorname{Re}(z)>0\}$ under the map $f(z)=\sqrt{z^{2}+1}$, where $\sqrt{w}$ is the principle branch of the square root of $w \in \mathbb{C}-(-\infty ; 0]$

Answer: Open right half plane without the unit segment between 0 and 1:

$$
\{\mathfrak{R e}(z)>0\}-(0 ; 1] .
$$

Figure 1: Image of the coordinate grid under the map $z \mapsto \sqrt{1+z^{2}}$.


Solution: We treat $f$ as the composition of 3 mappings:

$$
z \mapsto z^{2} \mapsto z^{2}+1 \mapsto \sqrt{z^{2}+1}
$$

The first map transforms the right half plane bijectively onto the complement of the negative $x$-axis. Indeed

$$
\{\operatorname{Re}(z)>0\}=\{z \mid \operatorname{Arg}(z) \in(-\pi / 2, \pi / 2)\} .
$$

Since $z \mapsto z^{2}$ doubles the argument, the image of $\{\operatorname{Re}(z)>0\}$ is $\{z \mid \operatorname{Arg}(z) \in(-\pi, \pi)\}=\mathbb{C}-(-\infty ; 0]$
Map $w \mapsto w+1$ transforms $\mathbb{C}-(-\infty ; 0]$ into $\mathbb{C}-(-\infty ; 1]$.
Finally, since $\sqrt{w}$ transforms $\mathbb{C}-(-\infty ; 0]$ bijectively onto the right half plane, the image of $\mathbb{C}-(-\infty ; 1]$ under $w \mapsto \sqrt{w}$ ca be found as the image of $\mathbb{C}-(-\infty ; 0]$ minus the image of $(0 ; 1]$ which is again $(0 ; 1]$ :

$$
f(\{\operatorname{Re}(z)>0\})=\{\operatorname{Re}(z)>0\}-(0 ; 1] .
$$

Problem 3. Function $f(z)$ is holomorphic in $\mathbb{C}-\{0\}$, has a pole of order 1 at $z=0$, and there exists $R>0$ such that

$$
|f(z)|<|z|^{3 / 2}
$$

as long as $|z|>R$. Classify all such functions $f(z)$.

Answer: $f(z)=a z+b+\frac{c}{z}$, where $a, b, c \in \mathbb{C}$ with $c \neq 0$.
Solution: Since $f(z)$ has simple pole at $z=0$, we can factor $f(z)$ as

$$
f(z)=\frac{g(z)}{z}
$$

where $g(z)$ is an entire holomorphic function with $g(0) \neq 0$.
We know that $|g(z)|<|z|^{5 / 2}$ for all large $|z|$. By Cauchy's estimate for higher derivatives, we conclude

$$
\left|g^{(k)}(0)\right| \leqslant M k!R^{-k} \leqslant k!R^{5 / 2-k}, \quad M=\sup _{|z|=R}|f(z)|
$$

Considering $R \rightarrow+\infty$, we conclude that for all $k \geqslant 3$ we have $g^{(k)}(0)=0$. So $g(z)$ is a quadratic polynomial: $g(z)=a z^{2}+b z+c$ and

$$
f(z)=\frac{g(z)}{z}=a z+b+\frac{c}{z}
$$

Since $g(0) \neq 0$ we have $c \neq 0$, and clearly any function of the above form satisfies all the properties of the problem.
Problem 4. For a continuous function $\varphi: \overline{\mathbb{D}} \rightarrow \mathbb{C}$ let us introduce a "non-holomorphicity measure"

$$
m(\varphi)=\inf _{f} \sup _{z \in \overline{\mathbb{D}}}|\varphi(z)-f(z)|
$$

where the infimum is taken over all functions $f$ holomorphic in a neighbourhood of $\mathbb{D}$. Compute $m(\varphi)$ for $\varphi(z)=|z|$.

Answer: $m(|z|)=1 / 2$.

## Solution:

First, note that for $f(z) \equiv 1 / 2$ we have

$$
\sup _{z \in \overline{\mathbb{D}}} \| z|-f(z)|=1 / 2
$$

so $m(|z|) \leqslant 1 / 2$.
Now, for any holomorphic function $f(z)$ we have

$$
\sup _{z \in \overline{\mathbb{D}}}| | z|-f(z)| \geqslant \sup _{|z|=1}|1-f(z)| \quad \text { and } \quad \sup _{z \in \overline{\mathbb{D}}}| | z|-f(z)| \geqslant|f(0)|
$$

By the maximum modulus principle applied to $1-f(z)$ we have

$$
\sup _{|z|=1}|1-f(z)| \geqslant|1-f(0)|
$$

Combining the above inequalities, we find:

$$
\sup _{z \in \overline{\mathbb{D}}}| | z|-f(z)| \geqslant|1-f(0)| \geqslant 1-|f(0)| \geqslant 1-\sup _{z \in \overline{\mathbb{D}}} \| z|-f(z)|
$$

so $\sup _{z \in \overline{\mathrm{D}}}| | z|-f(z)| \geqslant 1 / 2$ and $m(|z|)=1 / 2$.

Problem 5. Find the number of zeros of the polynomial $q(z)=z^{6}-2 z^{4}+6 z^{3}+z+1$ inside the unit disk $\mathbb{D}$.
Answer: 3 zeros.
Solution: Summand $f(z)=6 z^{3}$ dominates $g(z)=z^{6}-2 z^{4}+z+1$ on $\{|z|=1\}$, i.e, $|f(z)|>|g(z)|$ on the unit circle. Hence we can apply Rouché's theorem and conclude that polynomial $q(z)=f(z)+g(z)$ has the same number of zeros in the unit disk as $f(z)=6 z^{3}$ and the latter has one root with multiplicity 3 .

Problem 6. Let $f(z): \mathbb{C} \rightarrow \mathbb{C}$ be an entire holomorphic function. Assume that $f(z)$ has finitely many zeros in $\mathbb{C}$. Prove that there exist a polynomial $P(z)$ and an entire holomorphic function $g(z)$ such that

$$
f(z)=P(z) e^{g(z)}
$$

Solution: For every zero $z_{0}$ of function $f(z)$ we can factor out the term $\left(z-z_{0}\right)^{k}$ where $k$ is the order of zero at $z_{0}$ :

$$
f(z)=\left(z-z_{0}\right)^{k} \varphi(z), \quad \varphi\left(z_{0}\right) \neq 0
$$

Identifying such factor for each zero of $f(z)$, we will represent $f(z)$ as

$$
f(z)=P(z) h(z)
$$

where $P(z)$ is a polynomial in $z$ and $h(z)$ is an entire function with no zeros.
By a general result, a holomorphic function which does not vanish in a simply connected region admits a complex logarithm in that region:

$$
h(z)=e^{g(z)},
$$

and

$$
f(z)=P(z) e^{g(z)}
$$

as required.

