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Abstract

In the present thesis, we study metric flows on, not necessarily Kähler, complex Hermitian mani-

folds. Using the framework of the Hermitian curvature flows, due to Streets and Tian [ST11], we

find a distinguished metric flow (further referred to as the HCF), which shares many features of

the Ricci flow. For a large family of convex sets of Chern curvature tensors, we prove its invari-

ance under the HCF. Varying these convex sets, we demonstrate that the HCF preserves many

natural curvature (semi)positivity conditions in complex geometry: Griffiths/dual-Nakano/m-dual

positivity, positivity of the holomorphic orthogonal bisectional curvature, lower bounds on the sec-

ond scalar curvature. The key ingredient in the proof of these results is a very special form of the

evolution equation for the Chern curvature tensor, which we were able to obtain by introducing a

torsion-twisted connection. Motivated by these results, we formulate a differential-geometric ver-

sion of Campana-Peternell conjecture, which characterizes the rational homogeneous manifolds by

certain curvature semipositivity properties. We propose a metric flow approach based on the HCF

and make an initial progress towards the conjecture. Specifically, we characterize complex manifolds

admitting a metric of quasipositive Griffiths curvature, and find obstructions on the torsion-twisted

holonomy group of an Hermitian manifold with a semipositive dual-Nakano curvature. We illustrate

the behavior of the HCF by explicitly computing it on all complex homogeneous manifold, equipped

with submersion metrics.
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Chapter 1

Introduction

1.1 Overview

The subject of this thesis lies at the intersection of algebraic, differential, and complex geometry.

A general principle bridging these fields suggests that a certain algebraic or differential-geometric

positivity of the tangent bundle implies strong topological and geometric restrictions on the under-

lying manifold, and in many cases makes it possible to classify all such manifolds. A prototypical

illustration of the stated principle is the uniformization theorem for Riemann surfaces, which, in

particular, states that any closed oriented surface admitting a metric of semipositive Gauss cur-

vature is either conformally equivalent to the round sphere (S2, ground), or is flat and isomorphic

to the torus T 2. The relation between curvature positivity and geometric uniformization becomes

much more interesting and rich in higher dimensions. Let us review some of the related results and

problems.

A classical theorem of Bochner [Boc46] states that if a compact manifold M admits a metric

g with a semipositive Ricci curvature, then b1(M) 6 n. If, moreover, b1(M) = n, then (M, g)

is isometric to a flat torus. The proof of this theorem is based on the application of Bochner’s

identity, which relates the covariant derivatives of harmonic 1-forms to the Ricci curvature of the

underlying manifold. This is one of the simplest results, demonstrating that curvature positivity

implies “boundedness” of the topology of the underlying manifold. Bochner’s theorem also illus-

trates another important idea: often curvature semipositivity together with very mild topological

assumptions have strong geometric consequences.
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CHAPTER 1. INTRODUCTION

In his seminal papers [Ham82; Ham86], Hamilton introduced the Ricci flow and used it to

prove the classification of three/four-dimensional manifolds admitting metrics with positive Ricci

curvature/positive curvature operator. The main idea in Hamilton’s approach is to control the

positivity of the curvature tensor under the Ricci flow using a form of parabolic maximum principle

for tensors. Following this route, one can prove the pinching of the curvature tensor toward a constant

curvature tensor. This program was used by Böhm and Wilking [BW08] in their description of

manifolds admitting positive curvature operator in all dimensions. The assumption of the positivity

for the curvature operator was substantially weakened in a paper of Brendle and Schoen [BS09],

where the authors proved that manifolds with 1/4-pinched sectional curvature are diffeomorphic to

the space forms. In [BS08] they extended these results by classifying manifolds with weakly 1/4-

pinched sectional curvature. An important step in this proof is a version of strong maximum for the

curvature tensor evolved under the Ricci flow.

In the world of projective manifolds (Kähler with [ω] ∈ H2(M,Z)), besides the differential-

geometric notions of curvature positivity, there exist also purely algebraic positivity notions, e.g.,

concepts of ample, globally generated, nef, big vector bundles. This fact makes the relation between

the curvature positivity and the uniformization problems even more interesting and rich. Frankel’s

conjecture states that, the only manifold admitting a Kähler metric of positive Griffiths curvature is

the projective space Pn. It was proved by Siu and Yau [SY80] by studying harmonic maps S2 →M .

An algebraic counterpart of Frankel’s conjecture was proposed by Hartshorne. It states that Pn

is the only projective manifold with an ample tangent bundle. The conjecture was resolved by

Mori [Mor79] by purely algebraic methods.

The Ricci flow on Kähler manifolds satisfies particularly strong existence, convergence and sin-

gularity formation properties. Using these results, Chen, Sun, and Tian [CST09] gave an alternative

proof of Frankel’s conjecture based on the Kähler-Ricci flow. In [Mok88], Mok combined the ap-

proach based on the Kähler-Ricci flow with delicate algebraic methods to prove a generalization

of Frankel’s conjecture. A simplification of Mok’s argument, which uses solely the Ricci flow, was

found by Gu [Gu09]. Ties between Kähler and algebraic geometry over C open vast opportunities for

relating various questions about the Kähler-Ricci flow to purely algebraic problems. An illustration

of this principle is the analytical minimal model program, proposed by Song and Tian [ST17].

Unlike the Kähler situation, there are very little efficient tools to study non-Kähler complex

2



CHAPTER 1. INTRODUCTION

manifolds. Thus, given all the success of the Ricci flow, it is reasonable to try to extend it onto

arbitrary, not necessarily Kähler, Hermitian manifolds. However, on a general Hermitian manifold

(M, g, J), its Ricci curvature Ric(g) is not invariant under the operator of almost complex structure,

therefore the evolved metric is not necessarily Hermitian. This issue raises the following question

motivating our research.

Question 1.1. Are there geometric flows useful for studying Hermitian manifolds? Do these flows,

similarly to the Ricci and Kähler-Ricci flows, satisfy strong existence, convergence, and regularization

properties?

The main difficulty in approaching this question is that there exists a multitude of, seemingly

natural, modifications of the Ricci flow, while the geometric significance of these modified Ricci

curvatures and the corresponding ‘Einstein’ metrics (i.e, scale-static solutions to the flow equation)

is not always apparent. This makes the study of the long-time existence and convergence for these

flows a difficult task. To find a distinguished evolution equation for an Hermitian metric, we further

refine Question 1.1.

Question 1.2. Does there exist a modification of the Ricci flow for the Hermitian setting, which

preserves natural complex-analytic curvature positivity conditions?

Preservation of curvature positivity, imposed in Question 1.2 on an evolution equation for an

Hermitian metric, is a reasonable and important restriction, since: (a) in the Riemannian setting it

is satisfied by the Ricci flow; (b) its Riemannian analogue lies in the core of most of the classification

and uniformization problems resolved with the use of the Ricci flow.

In this thesis, we answer Question 1.2 affirmatively by finding a distinguished member of Streets-

Tian’s family of Hermitian curvature flows [ST11]. Namely, we consider an evolution equation

dgij
dt

= −gmnΩmnij −
1

2
gmngpsTmpjTnsi, (HCF)

where Ω and T are the curvature and the torsion of the Chern connection. The main feature of the

above flow is that the evolution equation for the Chern curvature takes a very special form.

Proposition 3.22. Under the HCF, Ω ∈ Sym1,1(End(T 1,0M)) ⊂ End(T 1,0M) ⊗ End(T 0,1M)

evolves by equation

d

dt
Ω = ∆∇T Ω + Ω# + trΛ2(M)(Ω∇T ⊗ Ω∇T ) + aduΩ

3



CHAPTER 1. INTRODUCTION

where u ∈ End(T 1,0M) is given by uji = − 1
2Ω nj

in .

Here ∆∇T and Ω∇T are the Laplacian and the curvature of the torsion-twisted connection canoni-

cally attached to any Hermitian manifold, and Ω#, aduΩ are certain algebraic operators on the space

of curvature tensors. We will spend a large part of the thesis setting up and motivating these alge-

braic and geometric notions.

We prove that the evolution equation for Ω satisfies a version of the maximum principle for

tensors. Given a subset S ⊂ End(V ), V = CdimM and a function F : End(V ) → R, we define a

convex set of algebraic curvature tensors C(S, F ) ⊂ Sym1,1(End(V )). Using the maximum principle

for tensors, we prove that many curvature positivity conditions are preserved along the flow (HCF).

Theorem 4.10. Consider an AdG-invariant subset S ⊂ End(V ) and a nice function F : End(V )→

R. Let g = g(t) be a solution to the HCF on an Hermitian manifold (M, g, J) for t ∈ [0, tmax).

Assume that Ωg(0) satisfies C(S, F ), i.e.,

Ωg(0) ∈ C(S, F )×G P.

Then the same holds for all t ∈ [0, tmax).

Here C(S, F ) ×G P is a subbundle of Sym1,1(End(T 1,0M)) associated with a GL(V )-space

C(S, F ) ⊂ Sym1,1(End(V )). Convex sets C(S, F ) define many natural curvature (semi)positivity

conditions, including Griffiths positivity and dual-Nakano positivity. This theorem extends anal-

ogous statements proved in [Ham82; Ban84; Ham86; Mok88; BW08; BS08; BS09; Wil13] in the

context of the Ricci and Kähler-Ricci flows. We also prove a version of the strong maximum princi-

ple for Ω.

Theorem 4.12. Consider an AdG-invariant subset S ⊂ End(V ) and a nice function F : End(V )→

R. Let g = g(t) be a solution to the HCF on an Hermitian manifold (M, g, J) for t ∈ [0, tmax).

Assume that Ωg(0) satisfies C(S, F ). Then for any t ∈ (0, tmax) the set

N(t) := {s ∈ S ×G P | 〈Ωg(t), s⊗ s〉tr = F (s)}

is preserved by the ∇T -parallel transport. Moreover, if s ∈ N(t), then the 2-form tr(s◦(Ω∇T )( · , · )) ∈

Λ2(M,C) vanishes.

The parabolic maximum principles for the Chern curvature opens vast opportunities for geo-

metric applications of the HCF. In the present thesis, we use the HCF to make an initial progress

4



CHAPTER 1. INTRODUCTION

approaching the following conjecture.

Conjecture 6.1. Any complex Fano manifold which admits an Hermitian metric of Griffiths/dual-

Nakano semipositive curvature must be isomorphic to a rational homogeneous space.

Griffiths semipositivity is known to be a very restrictive curvature positivity assumption (see,

e.g., [Yan17]). It implies numerical effectiveness of the tangent bundle. Therefore, the above con-

jecture can be thought of as an Hermitian version of the algebro-geometric Campana-Peternell

conjecture [CP91] (see also [DPS94; DPS95]). Applying the HCF to manifolds equipped with an

Hermitian metric of Griffiths/dual-Nakano semipositive curvature, we obtain strong evidence sup-

porting the conjecture. Using the results of Mori [Mor79] and the regularization properties of the

HCF, we prove the following result.

Theorem 6.4. Let (M, g, J) be a compact complex n-dimensional Hermitian manifold such that its

Griffith curvature is quasipositive, i.e.,

1. Chern curvature Ωg is Griffiths semipositive;

2. Ωgm is Griffiths positive at some point m ∈M .

Then M is biholomorphic to the projective space Pn.

We also prove that on Hermitian manifolds with dual-Nakano semipositive curvature, the torsion-

twisted holonomy Lie algebra is closely related to the zero set of the Chern curvature.

Theorem 6.6. Let g(t) be the solution to the HCF on (M, g, J). Assume that g(0) is dual-Nakano

semipositive. Then for t > 0, at any point m ∈M , subspace K = {v ∈ End(T 1,0M) | 〈Ω, v⊗ · 〉tr =

0} is the tr-orthogonal complement of the torsion-twisted holonomy subalgebra:

K = {v ∈ End(T 1,0M) | tr(v ◦ w) = 0 ∀ w ∈ hol∇T }.

In order to better understand the relation between the Hermitian curvature flow of metrics with

semipositive curvature and Conjecture 6.1, we explicitly compute the HCF on complex homogeneous

manifolds equipped with submersion metrics Msub (see Definition 5.6). The space of submersion

metrics is essentially the only known source of Griffiths/dual-Nakano semipositive Hermitian metrics

on general homogeneous manifolds. In this case, the HCF on a G-homogeneous manifold M = G/H

reduces to an ODE for B ∈ Sym1,1(g), g := Lie(G).

5



CHAPTER 1. INTRODUCTION

Theorem 5.18. Let M = G/H be a complex homogeneous manifold equipped with a submersion

Hermitian metric g0 = p∗(h0) ∈ Msub(M), where h0 ∈ Sym1,1(g∗). Let B(t) be the solution to the

ODE 
dB

dt
= B#,

B(0) = h−1
0 .

Then g(t) = p∗(B(t)−1) solves the HCF on (M, g0, J). In particular g(t) ∈Msub(M).

The expected behavior of the HCF on rational homogeneous manifolds motivates us to make a

purely algebraic conjectures about the pinching of the ODE
dB

dt
= B#. Moreover, blow-up behavior

of this ODE turn out to be closely related to algebraic structure of the Lie algebra g.

1.2 Organization of the Thesis

The rest of this thesis is organized as follows.

In Chapter 2, we provide the background for Hermitian geometry. We define various positivity

concepts for Hermitian holomorphic vector bundles and setup the abstract space of algebraic cur-

vature tensors. Next, we review the related work on the uniformization problems in Kähler and

algebraic geometry. Starting with the classical Hartshorne’s and Frankel’s conjectures, we discuss

their various generalizations, describe known approaches to their solutions, and motivate Conjec-

ture 6.1.

We open Chapter 3 with a discussion of various adaptations of the Ricci flow to the context

of Hermitian geometry. We briefly review the Chern-Ricci flow, the general family of Hermitian

curvature flows, and its specialization, the pluriclosed flow. Next, we define a member of the HCF

family, which will be in the focus of the present thesis. We compute the evolution equation for the

curvature tensor and, motivated by its form, introduce the torsion-twisted connection. The main

outcome of the chapter, is a very clean reinterpretation of the evolution equation for the curvature

tensor, obtained through the lens of the torsion-twisted connection, its Laplacian, and its curvature.

In Chapter 4, we adopt Hamilton’s maximum principle for tensors to the evolution equation for

the Chern curvature under the HCF. Following the framework of Wilking in the context of the Ricci

flow, we define a set of Lie-algebraic curvature (semi)positivity conditions and prove that these are

preserved by the HCF. Using the approach of Brendle and Schoen, we deduce a version of the strong

6



CHAPTER 1. INTRODUCTION

maximum principle for the HCF.

In Chapter 5, we turn our attention to the complex homogeneous manifolds M = G/H. We

introduce the space of submersion metrics on homogeneous manifolds and prove that these metrics

have dual-Nakano semipositive curvature. By explicitly computing the HCF on such (M, g, J), we

demonstrate that the evolution equation for g is induced by an ODE on Sym1,1(Lie(G)). Motivated

by the expected pinching of the curvature tensor under the HCF, we make purely algebraic conjecture

concerning the above ODE on Sym1,1(Lie(G)).

In Chapter 6, we discuss possible applications of the curvature positivity preservation results,

which were proved in Chapter 4. We formulate a version of Conjecture 6.1 and approach it by the

means of the HCF. We prove that a complex manifold with Griffiths quasipositive Chern curvature

is biholomorphic to a projective space. Next, we study manifolds with the dual-Nakano semipositive

curvature. We prove that, after running the HCF for an arbitrary small time, the kernel of the

Chern curvature becomes invariant under the torsion-twisted parallel transport. Moreover the trace-

orthogonal complement of the kernel coincides with the torsion-twisted holonomy Lie-algebra. This

provides an approach to the weak Campana-Peternell conjecture through the study of the torsion-

twisted holonomy group. Finally, on a general Hermitian manifold, we construct scalar quantities,

which are monotone under the HCF, and use them to study the HCF-periodic solutions.

We conclude the thesis with Chapter 7. We summarize our main results and discuss further

questions, open problems, and research directions.

7



Chapter 2

Preliminaries

In this chapter, we discuss the preliminaries for the thesis. We provide a background for the basics

of Hermitian geometry, including the Chern connection, its curvature, and torsion tensors, Bianchi

identities, positivity concepts for Hermitian vector bundles. We define the space of algebraic curva-

ture tensors and describe its basic algebraic structure. Next, we review in detail the uniformization

conjectures due to Hartshorne [Har70] and Frankel [Fra61], and discuss their further possible gener-

alizations in complex and algebraic geometry.

2.1 Hermitian Geometry Background

In this section, we provide definitions and set up basic notations for ‘doing geometry’ on an Hermitian

manifold (M, g, J). Most of the material in this section is rather standard and is covered in many

references on complex geometry [GH94; Voi02; Huy05; Dem12].

2.1.1 Hermitian Manifolds

All manifolds in this thesis are assumed closed (compact without a boundary). Let M be a smooth

manifold, equipped with an integrable almost complex structure

J : TM → TM, J2 = −Id.

8



CHAPTER 2. PRELIMINARIES

The operator J defines the decomposition of the complexified tangent space TCM = TM ⊗ C into

the ±
√
−1 eigenspaces of J :

TCM = T 1,0M ⊕ T 0,1M.

which induces the decomposition of all associated complexified tensor bundles by type. In particular,

the space of complex-valued differential k-forms Λk(M,C) := Λk(T ∗CM) splits as follows

Λk(M,C) =
⊕
p+q=k

Λp,q(M).

Sections of the bundle Λp,q(M) are differential forms of type (p, q). The de Rham differential splits

correspondingly as d1,0 + d0,1 = ∂+ ∂. From now on, the Greek letters (ξ, η, ζ, etc.) denote complex

vectors and vector fields of type (1,0), while the capital Latin letters (X,Y, Z, etc.) denote real

vectors and vector fields.

Remark 2.1. Integrability of the almost complex structure J means that (M,J) is a genuine complex

manifold, i.e., it is modeled on open subsets of Cn with holomorphic transition functions. On a

complex manifold, the Lie bracket of any two vector fields of type (1,0) is again of type (1,0):

[ξ, η] ∈ C∞(M,T 1,0M), for ξ, η ∈ C∞(M,T 1,0M).

Celebrated Newlander-Nirenberg theorem states that the converse is also true, i.e., if on an almost

complex manifold (M,J) the space C∞(M,T 1,0M) is invariant under the Lie bracket, then J is an

integrable complex structure, see, e.g., [Voi02, Thm. 2.1].

Any complex manifold (M,J) admits a J-invariant Riemannian metric

g : TM ⊗ TM → R.

Metric g extends to a C-bilinear form on the complexified tangent bundle TCM , which, in turn,

yields an Hermitian metric on T 1,0M via ξ, η 7→ g(ξ, η). In what follows, we identify metric g, its

complexification, and the corresponding Hermitian metric on T 1,0M , since either of them determines

the rest.

Definition 2.2. A triple (M, g, J) consisting of a compact smooth manifold M , an integrable almost

complex structure J on it, and a J-invariant Riemannian metric g is called an Hermitian manifold.

9
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A real (1,1) form

ω(X,Y ) := g(JX, Y )

is called the fundamental form of (M, g, J). Hermitian manifold (M, g, J) is Kähler, if its funda-

mental form is closed: dω = 0.

A circle of questions related to the construction of metrics with prescribed properties, obstruc-

tions for the existence of certain metrics, interplay between the topology of (M,J) and the geometry

of (M, g, J) is a subject of Hermitian geometry.

2.1.2 Chern Connection

In order to study Riemannian geometry, one uses the Levi-Civita connection ∇LC on TM , which is

canonically attached to any Riemannian manifold (M, g). The situation in Hermitian geometry is

more subtle, since ∇LC does not necessary preserve the operator of almost complex structure, so it

does not distinguish different choices of J . A natural set up would be to consider a connection D

on TM , which preserves both g and J :

Dg = 0, DJ = 0. (2.1)

These conditions define an affine subspace in the space of all connections on TM . Unfortunately,

in general, equation (2.1) does not specify a unique connection. More precisely, the following result

due to Gauduchon holds.

Theorem 2.3 ([Gau97]). For an Hermitian manifold (M, g, J) let Ag,J be the affine space of con-

nections, satisfying (2.1). Then

1. Ag,J = {∇LC}, if (M, g, J) is Kähler;

2. dimRAg,J = 1 otherwise.

In the case dimRAg,J = 1, all connections D ∈ Ag,J have non-trivial torsion TD ∈ Λ2(M,TM):

TD(X,Y ) := DXY −DYX − [X,Y ].

In order to find distinguished members of Ag,J , it is natural to impose additional restrictions on TD.

Theorem 2.4 ([Gau97]). On any Hermitian manifold (M, g, J) there exist:

10
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• a unique connection ∇C ∈ Ag,J such that its torsion satisfies

T∇
C

(X, JY ) = T∇
C

(JX, Y ). (2.2)

This connection is called the Chern connection;

• a unique connection ∇B ∈ Ag,J such that the tensor

B(X,Y, Z) := g(T∇
B

(X,Y ), Z)

is totally skew-symmetric. This connection is called the Bismut connection.

The Chern and Bismut connections coincide if and only if (M, g, J) is Kähler. By Theorem 2.3

on a non-Kähler Hermitian manifold

Ag,J = {t∇C + (1− t)∇B | t ∈ R}.

In what follows, we will be working primarily with the Chern connection. To simplify notations,

we will write ∇ for the Chern connection ∇C and T for its torsion. We automatically extend ∇ and

all other connections on TM to C-linear connections on TCM and, by Leibniz rule, to connections on

all associated vector bundles, e.g., T ∗M,Λk(M), End(TM), etc. With the C-linear extension of ∇,

condition (2.2) is equivalent to the fact that the type (1,1) part of the torsion tensor T ∈ Λ2(M,TCM)

vanishes, i.e.,

T (ξ, η) = 0, ξ, η ∈ T 1,0M.

Remark 2.5. Alternatively, one can define the Chern connection as the unique Hermitian connection

on the holomorphic Hermitian vector bundle (T 1,0M, g), which is compatible with the holomorphic

structure (see, e.g., [KN69, Prop. 10.2]), i.e., ∇ : C∞(M,T 1,0M)→ C∞(M,T 1,0M ⊗Λ1(M,C)) such

that:

1. ∇ preserves Hermitian metric, ∇g = 0;

2. the (0,1)-part of ∇ coincides with operator of holomorphic structure ∂, i.e., ∇ξη = iξ(∂η) for

any type (1,0) vector field η ∈ C∞(M,T 1,0M) and any (0,1)-vector ξ ∈ T 0,1M .

The advantage of this definition is that it makes sense for any holomorphic vector bundle (E , ∂E)→

M , equipped with an Hermitian metric h ∈ C∞(M, E ⊗ E).

11
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Definition 2.6 (Laplacian of a connection). Consider a Riemannian manifold (M, g) equipped

with a metric connection DTM . Let (E , DE) be a vector bundle E →M with a connection DE . The

Laplacian ∆DE is the second order differential operator on C∞(M, E) given by the composition

C∞(M, E)
DE−−→ C∞(M,Λ1(M)⊗ E)

DTM⊗id+id⊗DE−−−−−−−−−−−→ C∞(M,Λ1(M)⊗ Λ1(M)⊗ E)
trg⊗id−−−−→ C∞(M, E),

where trg : Λ1(M)⊗ Λ1(M)→ R is the metric contraction.

We will be using this definition in a situation, when (M, g) is an Hermitian manifold, E is a

complex vector bundle, DTM is the Chern connection, and DE is some connection on E . If E is a

bundle associated with TM and DE is the Chern connection, we will refer to this operator as the

Chern Laplacian and denote it by ∆. In holomorphic coordinates the Chern Laplacian is given by

∆ =
1

2

∑
m,n

gmn
(
∇∂/∂zm∇∂/∂zn +∇∂/∂zn∇∂/∂zm

)
. (2.3)

Note that ∆ differs from the standard Riemannian Laplacian on (M, g).

We will need the following lemma relating the Laplacians of two different connections on E .

Lemma 2.7. Let DE1 = D and DE2 = D + A be two connections on a vector bundle E, where

A ∈ Λ1(M,End(E)). We extend D and D + A to connections on the associated tensor bundle

Λ1(M)⊗ End(E) using a connection DTM on the tangent bundle. Then

∆D+A = ∆D + trg(A ◦A+ 2A ◦D) + divDA,

where divDA = trg(D•A)•.

Proof. Let {ei}dimM
i=1 be a local orthonormal frame. Then

∆D+A =

dimM∑
i=1

(
(D +A)ei(D +A)ei − (D +A)DTMei ei

)
=

dimM∑
i=1

(
DeiDei −DDTMei

ei

)
+

dimM∑
i=1

(
Dei ◦Aei +Aei ◦Dei +Ae1 ◦Aei −ADTMei ei

)
=∆D +

dimM∑
i=1

(
Dei(A)ei +ADTMei ei + 2Aei ◦Dei +Ae1 ◦Aei −ADTMei ei

)
=∆D + divDA+ trg(2A ◦D +A ◦A).

Observe that the difference ∆D+A−∆D is always a first-order differential operator on C∞(M, E).

12
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Moreover, by choosing A ∈ Λ1(M,End(E)) we can make the difference to have an arbitrary principle

symbol of order one, and, given a principle symbol, A is uniquely defined.

2.1.3 Chern Curvature

Definition 2.8. The curvature of a connection D on a vector bundle E is the tensor ΘE ∈

Λ2(M,End(E)):

ΘE(X,Y )e := (DXDY −DYDX −D[X,Y ])e,

where X,Y ∈ TM , e ∈ E . It is straightforward to check that the value of ΘE at a given point m ∈M

does not depend on the extension of X,Y , and e to tensor fields in the neighbourhood of m.

Remark 2.9. In this thesis, we will be dealing mostly with the curvatures of the Chern connections

on holomorphic Hermitian bundles (E , h). In this situation the complexified Chern curvature has

additional symmetries, in particular, ΘE ∈ Λ1,1(M,End(E)).

Definition 2.10. The Chern curvature of an Hermitian manifold (M, g, J) is the curvature of the

connection ∇ on TM .

Ω := ΘTM .

We also introduce a tensor with 4 vector arguments by lowering one index via g.

Ω(X,Y, Z,W ) := g
(
(∇X∇Y −∇Y∇X −∇[X,Y ])Z,W

)
.

If there might be an ambiguity of which metric is used to define curvature/torsion tensors, we use

the corresponding superscript Ωg, T g.

The defining properties of the Chern connection imply that the Chern curvature tensor Ω satisfies

a number of symmetries.

Proposition 2.11. The (complexified) Chern curvature Ω(X,Y, Z,W ) lies in

Λ1,1(M)⊗ Λ1,1(M) ' Λ1,1(M,Λ1,1(M)) ⊂ Λ2(M,T ∗CM ⊗ T ∗CM).

Explicitly, for any real vectors X,Y, Z,W ∈ TM one has

• Ω(X,Y, Z,W ) = −Ω(Y,X,Z,W ), Ω(X,Y, Z,W ) = −Ω(X,Y,W,Z);

• Ω(JX, JY, Z,W ) = Ω(X,Y, Z,W ), Ω(X,Y, JZ, JW ) = Ω(X,Y, Z,W ),

13
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or, equivalently, for ξ, η, ζ, ν ∈ T 1,0M

Ω(ξ, η, ·, ·) = Ω(·, ·, ζ, ν) = 0, Ω(ξ, η, ζ, ν) = Ω(η, ξ, ν, ζ).

Symmetries of Ω imply that Ω(ξ, ξ, η, η) ∈ R. It is easy to check that the values Ω(ξ, ξ, η, η) for

ξ, η ∈ T 1,0M completely determine tensor Ω.

Often, in computations we will use coordinate notation for different tensors and assume Einstein

summation for repeated upper/lower indices, e.g.,

∇i := ∇∂/∂zi ,

Ωijkl := Ω(∂/∂zi, ∂/∂zj , ∂/∂zk, ∂/∂zl),

T kij ∂/∂z
k := T (∂/∂zi, ∂/∂zj),

Tijl := g(T (∂/∂zi, ∂/∂zj), ∂/∂zl).

Unlike the Riemannian case, in Hermitian geometry, the Chern curvature does not satisfy the

classical Bianchi identities, since the Chern connection has torsion. However, in this case slightly

modified identities, involving torsion still hold [KN63, Ch. III, Thm. 5.3].

Proposition 2.12 (Bianchi identities for the Chern curvature). For any vectors X,Y, Z ∈ TM one

has respectively the first (algebraic) and the second (differential) Bianchi identities∑
S3

Ω(X,Y )Z =
∑
S3

(
T (T (X,Y ), Z) +∇XT (Y,Z)

)
,

∑
S3

(
∇XΩ(Y,Z) + Ω(T (X,Y ), Z)

)
= 0,

(2.4)

where the sum is taken over all cyclic permutations. Splitting these identities by complex type

and using the vanishing of the (1, 1)-part of T and symmetries of Ω, we get that for any vectors

ξ, η, ζ ∈ T 1,0M

Ω(ξ, η)ζ − Ω(ζ, η)ξ = ∇ηT (ζ, ξ),∑
S3

(
T (T (ξ, η), ζ) +∇ξT (η, ζ)

)
= 0,

∇ζΩ(ξ, η)−∇ξΩ(ζ, η) = Ω(T (ξ, ζ), η).

14
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Equivalently, in the coordinates

Ωijkl = Ωkjil +∇jTkil, Ωijkl = Ωilkj +∇iTljk,

T sijT
l
sk + T sjkT

l
si + T skiT

l
sj+∇iT ljk +∇jT lki +∇kT lij = 0,

∇mΩijkl = ∇iΩmjkl + T pimΩpjkl, ∇nΩijkl = ∇jΩinkl + T s
jn

Ωiskl.

(2.5)

In the computations below we will be extensively using the first and the second Bianchi identities,

involving the Chern curvature and its derivative respectively. Presence of the torsion terms in the

Bianchi identities for Ω indicates that the four Ricci contractions of the Chern curvature tensor differ

from each other (see [LY17] for the explicit description of the differences between these contractions):

S
(1)

ij
:= Ωijmng

mn, S
(2)

ij
:= Ωmnijg

mn,

S
(3)

ij
:= Ωnjimg

mn, S
(4)

ij
:= Ωinmjg

mn.

(2.6)

We call these contractions the Chern-Ricci tensors. Symmetries of Ω imply that the first and the

second Chern-Ricci tensors define Hermitian products on T 1,0M . In general this is not the case for

S(3) and S(4), since S
(3)

ij
6= S

(3)

ji
= S

(4)

ij
. By the second Bianchi identity (2.4), the real (1,1)-form

ρ :=
√
−1S

(1)

ij
dzi ∧ dzj

is closed, and according to the Chern-Weil theory it represents the class 2πc1(M) ∈ H2(M,R). All

four Chern-Ricci contractions (2.6) will play certain role below.

There are also two scalar contractions of Ω: the standard scalar curvature sc = gijgklΩijkl =

trgS
(1) = trgS

(2) and a quantity, which will be referred to as the second scalar curvature and will

play important role below:

ŝc = gilgkjΩijkl = trgS
(3) = trgS

(4).

By rising the last two indices of the Chern curvature tensor, we can interpret Ω as a section of

End(T 1,0M)⊗ End(T 1,0M):

Ω lk
ij

(ek ⊗ εi)⊗ (el ⊗ εj), Ω lk
ij

= Ωijmng
mlgkn,

where {ei} is a local frame of T 1,0M and {εi} is the dual frame. Symmetries of Ω imply that this

form is Hermitian, i.e., defines an Hermitian inner product on (End(T 1,0M))∗ ' End(T 1,0M). This

interpretation of Ω will turn out to be very useful.
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2.1.4 Curvature Positivity for Hermitian Vector Bundles

Now, we discuss positivity concepts for holomorphic vector bundles. Let us first recall the basic

definition for line bundles. Consider a holomorphic line bundle L →M .

Definition 2.13. A holomorphic line bundle L is very ample if the space of global sections H0(M,L)

defines an embedding M ↪→ P(H0(M,L)∗). Line bundle L is ample, if its positive tensor power is

very ample.

Now, assume, that L is equipped with an Hermitian metric h.

Definition 2.14. A holomorphic Hermitian line bundle (L, h) is positive, if the curvature ΘL ∈

Λ2(M,C) of the Chern connection D is positive, i.e.,

ΘL(ξ, ξ) > 0

for any nonzero ξ ∈ T 1,0M .

Example 2.15. Let (V, hV ) be a complex Hermitian vector space with a metric hV . The line bundle

L = O(1) over P(V ) is very ample with H0(P(V ),O(1)) ' V ∗. Moreover, hV induces a metric hO(1)

on O(1), which makes (O(1), hO(1)) a positive Hermitian line bundle.

Example 2.15 implies that any ample line bundle admits a metric of positive curvature. Indeed,

if L⊗m is a very ample line bundle on M , with the induced embedding ιL⊗m : M → P(V ), then

ι∗L⊗mh
1/m
O(1) is a metric on L with a positive curvature. The converse of the above statement is the

content of the Kodaira embedding theorem. Namely a holomorphic line bundle, admitting a metric

with positive curvature is necessarily ample.

Now, assume that E →M is a holomorphic vector bundle of rank r > 1. Originally, the following

definition was given by Hartshorne for smooth projective varieties, however it makes sense for any

compact complex manifold.

Definition 2.16 ([Har66]). For a holomorphic vector bundle E →M , consider the projectivization

of its dual bundle (in other words, the bundle of hyperplanes in E):

π : P(E∗)→M.

Vector bundle E is ample if the line bundle OP(E∗)(1)→ P(E∗) is ample.
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Remark 2.17. If E is a line bundle, then P(E∗) = M , and OP(E∗)(1) ' E . Hence, the notion of

ampleness for vector bundles is indeed a generalization of the ampleness for line bundles.

Next, we discuss various notions of curvature positivity for a holomorphic Hermitian vector

bundle (E , h). In this part we follow [Dem12, Ch. VII, §6]. As before, denote by D the corresponding

Chern connection and by ΘE ∈ Λ1,1(M,End(E)) its curvature. Pick a frame {eα} = (e1, . . . , er) of

Em,m ∈M and the dual frame {εβ}. Then

ΘE = Θ β

ijα
dzi ∧ dzj ⊗ εα ⊗ eβ .

The Hermitian property of the Chern connection implies that

Θijαβ = Θjiβα, (2.7)

where Θijαβ := Θ γ

ijα
hγβ .

Definition 2.18. The Chern curvature ΘE induces a pairing θE on T 1,0M ⊗ E defined by

θE = Θijαβ(dzi ⊗ εα)⊗ (dzj ⊗ εβ),

so that for ξ1 ⊗ v1, ξ2 ⊗ v2 ∈ T 1,0M ⊗ E we have

θE(ξ1 ⊗ v1, ξ2 ⊗ v2) = h(ΘE(ξ1, ξ2)v1, v2).

Identity (2.7) implies that θE is an Hermitian form on T 1,0M ⊗ E .

Using the form θE we can now introduce positivity concepts for (E , h).

Definition 2.19 (Curvature positivity notions). Given a holomorphic Hermitian vector bundle

(E , h) we say that it is

1. Nakano positive (see [Nak55]), if the Hermitian form θE is positive definite on T 1,0M ⊗ E (we

write E >Nak 0);

2. Griffiths positive (see [Gri69]), if the Hermitian form θE is positive on all non-zero decomposable

tensors {ξ ⊗ v} ⊂ T 1,0M ⊗ E (we write E >Gr 0);

3. m-positive, where 1 6 m 6 min(r, dimM), if the Hermitian form θE is positive on all non-zero

tensors of rank 6 m: {
∑m
i=1 ξi ⊗ vi} ⊂ T 1,0M ⊗ E (we write E >m 0).
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For all the concepts, the notions of negativity, semipositivity (=non-negativity), and semi-

negativity (=non-positivity) are understood in the obvious way.

Clearly, if E is a line bundle, all three definitions coincide with the standard notion of positivity

for line bundles (Definition 2.14). Three notions also coincide on a complex curve. In general, m-

positivity interpolates between a weaker notion of Griffiths positivity (m = 1) and a stronger notion

of Nakano positivity (m = min(r, dimM)).

Definition 2.20. We say that a bundle (E , h) is dual -Nakano (resp. Griffiths/m-) positive, if (E∗, h)

is Nakano (resp. Griffiths/m-) negative.

Remark 2.21. Dual-Griffiths positivity is equivalent to Griffiths positivity [Dem12, Prop. 6.6], so

there is no need to reserve a special name for it. The situation is more subtle for other notions.

In particular, there exist examples of bundles, which are dual-Nakano positive, but not Nakano

positive, e.g., the tangent bundle T 1,0Pn of a projective space Pn, equipped with the Fubini-Studi

metric.

Remark 2.22. Dual-Nakano positivity is equivalent to the positivity of the following Hermitian

pairing on T 1,0M ⊗ E∗:

(T 1,0M ⊗ E∗)⊗ (T 1,0M ⊗ E∗) 3 (uiα, v
j
β) 7→ Θ βα

ij
uiαv

j
β ∈ C, (2.8)

where Θ βα

ij
:= Θ α

ijγ
hγβ . The pairing (2.8) for (E , h) = (T 1,0M, g) will play the crucial role in

the formulation and the proof of our main results. In this case, T 1,0M ⊗ E∗ = End(T 1,0M) is a

Lie algebra, and the space of the Chern curvature tensors has a rich algebraic structure, which we

investigate in the next section.

Unlike the situation with the line bundles, the relation between the ampleness of a higher rank

vector bundle and the existence of an Hermitian metric, satisfying some positivity notion is not

well-understood. In general, for a holomorphic Hermitian vector bundle (E , h) we have implications

E >Nak 0⇒ E >m 0⇒ E >Gr 0⇒ E is ample. (2.9)

The converse of the last implication is the content of a well-known conjecture due to Griffiths.

Conjecture 2.23 (Griffiths Conjecture [Gri69]). If E → M is an ample1 vector bundle, then E

admits a Griffiths positive Hermitian metric.
1In [Gri69], Griffiths uses the name cohomologically positive for ample vector bundles.
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Remark 2.24. Kobayashi [Kob75] proved that ampleness of a vector bundle E is equivalent to the

existence of a Kobayashi negative Finsler metric on E∗. Hence, a possible approach to Griffiths

conjecture would be to deform this Finsler metric into a genuine Hermitian metric of negative

Griffiths curvature. Very recently, Wan [Wan18] proposed a geometric flow of Finsler metrics and

studied preservation of the Kobayashi negativity under this flow.

An important feature of complex geometry is the existence of a deep relation between the Chern

curvature of a bundle and the Chern curvatures of its sub/quotient bundles. Specifically, consider

an exact sequence of holomorphic vector bundles on M

0→ S i−→ E p−→ Q→ 0.

Let E be equipped with an Hermitian metric h and assume that the metrics on S and Q are

induced from h via identifications S ' im i, Q ' (im i)⊥. We denote these metrics by i∗h and p∗h

respectively. Define the second fundamental form β ∈ Λ1,0(M,Hom(S,Q)) by the identity

βξ(s) := p(∇Eξ (i(s))),

where ∇E is the Chern connection on E . The second fundamental form depends only on the value

of a section at a given point; it vanishes precisely when the h-orthogonal splitting of E into i(S) and

i(S)⊥ is holomorphic. Denote by β∗ ∈ Λ0,1(M,Hom(Q,S)) the adjoint of β defined by the identity:

(p∗h)(βξ(s), q) = (i∗h)(s, β∗
ξ
(q)), ξ ∈ T 1,0M, s ∈ S, q ∈ Q.

Fix a C∞-isomorphism

S ⊕Q ' i(S)⊕ (i(S))⊥ = E .

There are Chern curvature tensors: ΘS ∈ Λ1,1(M,End(S)), ΘE ∈ Λ1,1(M,End(E)), ΘQ ∈ Λ1,1(M,End(Q)),

and we want to compare ΘE
∣∣
S with ΘS and ΘE

∣∣
Q with ΘQ.

We have the following formula for the Chern connection ∇E in terms of the Chern connections

of S and Q:

∇E =

∇S −β∗

β ∇Q

 .

Furthermore, the curvature of ∇E with respect to this identification is given by (see [Dem12,
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Thm. 14.5])

ΘE =

 ΘS − β∗ ∧ β −(β∗ ◦ ∇Q +∇S ◦ β∗)

β ◦ ∇S +∇Q ◦ β ΘQ − β ∧ β∗

 . (2.10)

Formula (2.10) has an important consequence.

Corollary 2.25. Let ξ, η ∈ T 1,0M , s1, s2 ∈ S and q1, q2 ∈ Q. Then

h(ΘE
∣∣
S(ξ, η)s1, s2) =(i∗h)(ΘS(ξ, η)s1, s2) + (p∗h)(βξ(s1), βη(s2)),

h(ΘE
∣∣
Q(ξ, η)q1, q2) =(p∗h)(ΘQ(ξ, η)q1, q2)− (i∗h)(β∗η(q1), β∗

ξ
(q2)).

(2.11)

With Corollary 2.25 we make two important observations.

1. The curvature of (S, i∗h) does not exceed the curvature of (E , h) restricted to S in any of the

Nakano/Griffiths/m-positivity senses;

2. The curvature of (Q, p∗h) is at least as positive as the the curvature of (E , h) restricted to Q

in any of the dual -Nakano/Griffiths/m-positivity senses.

Corollary 2.25 is a reflection of an important principle: curvature decreases in holomorphic subbun-

dles and increases in quotient bundles [GH94, Ch. 0 §5].

Recall that a holomorphic bundle E is globally generated by its sections, if the natural evaluation

map ev : H0(M, E) → E is fiberwise surjective. Identity (2.11) implies that any globally generated

holomorphic E can be equipped with a metric h, which makes (E , h) a dual-Nakano semipositive

Hermitian bundle. Namely, it suffice to set h = ev∗h0 for an Hermitian metric h0 on the vector

space H0(M, E).

2.1.5 Space of Curvature Tensors

Let V be a complex vector space. We denote by V the underlying real vector space with a conjugate

complex structure and by Sym1,1(V ) the subspace of V ⊗ V spanned over R by all the elements

of the form v ⊗ v, v ∈ V . In other words, Sym1,1(V ) is the set of (not necessary positive definite)

Hermitian forms on V ∗. Equip V with an Hermitian metric g and extend g to all associated tensor

powers of V and V . In this section, we denote by g = End(V ) the endomorphism Lie algebra of V .

Let 〈 · , · 〉tr : g⊗ g→ C be the trace pairing

〈u, v〉tr := tr(uv).
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Definition 2.26. The space of algebraic curvature tensors on V is the vector space Sym1,1(g).

Pairing 〈 · , · 〉tr extends to a bilinear form on Sym1,1(g) in the obvious way:

〈v ⊗ v, u⊗ u〉tr := |tr(uv)|2.

Clearly, Ω ∈ Sym1,1(g) represents a positive (resp. semipositive) Hermitian form on g∗ if and only if

〈Ω, u⊗ u〉tr > 0 (resp.> 0) for any nonzero u ∈ g.

Remark 2.27. For V = T 1,0M , the space Sym1,1(g) models the space of Chern curvature tensors,

represented as in (2.8). Unlike the Riemannian/Kähler setting, where one is interested only in the

part of Sym1,1(g), satisfying the algebraic Bianchi identity, we consider the whole space Sym1,1(g),

since the Chern curvature has less symmetries. In this case, Ω ∈ Sym1,1(g) is semipositive precisely

if and only if (T 1,0M, g) is dual-Nakano semipositive.

There is a natural R-linear adjoint action of g on Sym1,1(g):

adv(u⊗ u) = [v, u]⊗ u+ u⊗ [v, u], v, u ∈ g.

For Ω ∈ Sym1,1(g), let {vi} be an orthonormal basis of g, diagonalizing Ω with the real eigenval-

ues {λi}:

Ω =
∑
i

λivi ⊗ vi.

We define two important quadratic operations on the space Sym1,1(g).

Ω#: For v1 ⊗ w1, v2 ⊗ w2 ∈ g⊗ g define

(v1 ⊗ w1)#(v2 ⊗ w2) = [v1, v2]⊗ [w1, w2]. (2.12)

This map gives rise to a bilinear operation #: Sym1,1(g) ⊗ Sym1,1(g) → Sym1,1(g). Let

Ω# := 1
2 (Ω#Ω) be the #-square of Ω. In the basis {vi} the #-square of Ω is given by

Ω# =
∑
i<j

λiλj [vi, vj ]⊗ [vi, vj ].

Ω2: Metric g induces the isomorphism ιg : Ω 7→ RΩ, mapping Ω to the corresponding self-adjoint

operator RΩ : g→ g. Define Ω2 := ι−1
g ((RΩ)2). In the basis {vi} the square of Ω is given by

Ω2 :=
∑
i

λ2
i vi ⊗ vi.
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Note that Ω2 is positive semidefinite, i.e., 〈Ω2, u⊗ u〉tr > 0 for any u ∈ g. Moreover, 〈Ω2, u⊗

u〉tr = 0 if and only if u ∈ ker Ω.

Operation Ω# was introduced by Hamilton in [Ham86], while studying the evolution equation

for the Riemannian curvature tensor under the Ricci flow. The defining equation (2.12) makes sense

for any Lie algebra g and does not depend on the choice of metric on g. In [Ust17a], we used

this operation for an arbitrary Lie algebra g to study the HCF on complex homogeneous manifolds

G/H. We discuss algebraic properties of operation # and its relation to the geometry of complex

homogeneous spaces in Chapter 5.

The following proposition provides coordinate expressions for Ω2 and Ω#.

Proposition 2.28. Let {em} be a basis of V and {εm} be the dual basis. For an element Ω ∈

Sym1,1(g)

Ω = Ω lk
ij

(ek ⊗ εi)⊗ (el ⊗ εj),

we have

(Ω#) lk
ij

= Ω lk
pn Ω np

ij
− Ω nk

pj
Ω lp
in ,

(Ω2) lk
ij

= gmngpsΩ
sk

in Ω lp

mj
.

Proof. First, we compute Ω#. For em ⊗ εn, ep ⊗ εs ∈ g we have

[em ⊗ εn, ep ⊗ εs] = δnp em ⊗ εs − δsmep ⊗ εn.

Therefore

Ω#Ω =Ω lk
ij

Ω dc
ab

[ek ⊗ εi, ec ⊗ εa]⊗ [el ⊗ εj , ed ⊗ εb]

=Ω lk
ij

Ω dc
ab

(δicek ⊗ εa − δakec ⊗ εi)⊗ (δjdel ⊗ εb − δbl ed ⊗ εj).

After expanding the Kronecker δ’s we get the desired expression for Ω# = 1
2Ω#Ω.

Now, we compute Ω2. In coordinates, the operator RΩ : g→ g is given by

RΩ(em ⊗ εp) = Ω lk
ij

gpjgml(ek ⊗ ε
i).

Therefore

(RΩ)2(em ⊗ εp) = Ω ls
nj

Ω qk
ir gpjgmlgsqg

nr(ek ⊗ εi),

which implies the stated formula for Ω2.
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2.2 Hartshorne’s and Frankel’s Conjectures

In this section, we review Frankel’s and Hartshorne’s conjectures, characterizing the complex pro-

jective space Pn by positivity of its tangent bundle, and discuss various generalizations of these

conjectures.

Recall that a Kähler manifold (M, g, J) has positive holomorphic bisectional curvature, if its

tangent bundle (T 1,0M, g) is Griffiths positive. In [Fra61], Frankel proposed the following conjecture.

Conjecture 2.29 (Frankel’s conjecture). Every compact n-dimensional Kähler manifold of positive

holomorphic bisectional curvature is biholomorphic to the complex projective space Pn.

By the results of Andreotti-Frankel this result was known for n = 2. For arbitrary n, in [Fra61],

Frankel proved that manifolds, satisfying the assumptions of the conjecture, share certain cohomolog-

ical properties with the projective spaces, namely, any two analytic submanifolds of complementary

dimensions necessarily intersect. Finally, in [SY80] Siu and Yau resolved Frankel’s conjecture in

all dimensions. Proof of [SY80] is based on the cohomological characterization of the projective

spaces due to Kobayashi, Ochiai [KO73] and uses energy minimizing harmonic maps S2 →M . An

approach based solely on the Kähler-Ricci flow, was proposed by Chen, Sun, and Tian [CST09].

They gave an alternative proof of the Frankel’s conjecture, based on the prior work on convergence

of the Kähler-Ricci flow to Kähler-Ricci solitons and Kähler-Einstein metrics.

Partly motivated by the statement of Frankel’s conjecture, Hartshorne [Har70] has suggested the

following purely algebraic conjecture.

Conjecture 2.30 (Hartshorne’s conjecture). Every irreducible n-dimensional non-singular projec-

tive variety with ample tangent bundle defined over an algebraically closed field k of characteristic

> 0 is isomorphic to the projective space Pn.

Even over C, Hartshorne’s conjecture is stronger than the conjecture of Frankel. Indeed, as we

have observed in (2.9), positivity of the holomorphic bisectional curvature implies the ampleness of

T 1,0M , so Frankel’s conjecture follows from Hartshorne’s conjecture.

Hartshorne himself has proved the conjecture for surfaces [Har70]. Mabuchi [Mab78] proved

the conjecture in dimension n = 3. Finally, Hartshorne’s conjecture was completely proved by

Mori [Mor79]. Interestingly, similarly to Siu and Yau, Mori studied rational curves P1 ' S2 → M

of minimal degree and their deformation spaces.
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After almost simultaneous solutions to Frankel’s and Hartshorne’s conjectures, large amount of

research has been driven by various generalizations of these results. One can try relaxing tangent

bundle positivity conditions, in such a way, that there is still a hope for a complete classification of

the underlying manifolds. On the differential-geometric side, it is natural to study Kähler manifolds

with semipositive holomorphic bisectional curvature. This class is strictly larger, than just projective

spaces, since it includes, e.g., products of complex tori and projective spaces. In fact, the Killing

metric on a compact Hermitian symmetric space is an example of a Kähler metric with semipositive

holomorphic bisectional curvature. The generalized Frankel’s conjecture states that, morally, these

are the only possible examples.

Conjecture 2.31 (Generalized Frankel’s conjecture). Every compact n-dimensional Kähler mani-

fold of semipositive bisectional curvature is isometric to the quotient of

(Cn, gflat)× (M1, κ1)× · · · × (Mk, κk)× (Pn1 , g1)× · · · × (Pnl , gl),

where {Mi} are compact Hermitian symmetric spaces of rank > 2, gflat is the Euclidean metric on

Cn, κi is the Killing metric on a symmetric space, and gi is a Griffiths semipositive metric on a

projective space.

In the case, when the manifold is assumed to be Kähler-Einstein, the conjecture was proved

by Mok and Zhong [MZ86] by showing that the curvature tensor is parallel. The conjecture was

proved by Cao and Chow [CC86] under a stronger curvature positivity assumption — semipositivity

of dual-Nakano curvature. Shortly after, Mok [Mok88] has completely resolved the generalized

Frankel’s conjecture. His proof combines several ingredients: the regularization of the metric and

the curvature by the Ricci flow, the theory of the variety of minimal rational tangents, developed by

himself, and Berger’s holonomy theorem [Ber55], which states that non-symmetric Kähler manifolds

with positive Ricci curvature have restricted holonomy U(n). The latter turned out to be the key

step in many related uniformization results.

Recently, following the ideas of Brendle and Schoen, which were used in the classification of

weakly 1/4-pinched Riemannian manifolds [BS08], Gu [Gu09] has substantially simplified Mok’s

proof of the generalized Frankel conjecture. Arguments of [BS08], and [Gu09] both rely on Berger’s

holonomy classification. These results illustrate that often Riemannian manifolds with a semipositive

curvature in an appropriate sense, which do not admit a metric of a strictly positive curvature, are
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geometrically rigid, i.e., not only their topology is bounded, but also the underlying metric is uniquely

defined.

Another possible way to weaken the assumption of Frankel’s conjecture, is to use holomorphic

orthogonal bisectional curvature. Recall that Ω has positive (resp. semipositive) holomorphic orthog-

onal bisectional curvature, if Ω(ξ, ξ, η, η) > 0 (resp.> 0) whenever nonzero vectors ξ, η ∈ T 1,0M are

orthogonal to each other. It turns out, that (semi)positivity of holomorphic orthogonal bisectional

curvature is not that different from Griffiths (semi)positivity. Namely, in 1992 in an unpublished

work Cao and Hamilton observed that this positivity condition is preserved by the Kähler-Ricci

flow [BEG13, Ch. 5]. Results of Chen [Che07], Gu, Zhang [GZ10], and Wilking [Wil13] on the be-

havior of this positivity condition under the Kähler-Ricci flow imply that only the projective spaces

admit metrics of positive holomorphic orthogonal bisectional curvature. Recently, in [FLW17] au-

thors modified the original argument of Siu and Yau to make it work under the assumption of the

positivity of the holomorphic orthogonal bisectional curvature.

On the algebraic side, attempts to generalize the original Hartshorne’s conjecture also led to new

research directions, however a key uniformization question (Conjecture 2.33 below) is still largely

open. In [CP91], Campana and Peternell study projective manifolds M with numerically effective

(nef) tangent bundles. Recall, that this means that c1(L), where L = OP(T∗M)(1), integrates non-

negatively over any holomorphic curve C ⊂ P(T ∗M). The authors focus on projective threefolds

M3 and prove that any such M has an étale covering that is fibered over its Albanese variety with

a fiber a rational homogeneous manifold. In the same paper, a similar theorem is conjectured to be

true in higher dimensions.

In [DPS94], [DPS95], Demailly, Peternell, and Schneider further develop the tools for studying

Kähler manifolds with nef tangent bundles. Recall that projective manifold M is Fano, if its an-

ticanonical bundle K−1
M is ample, or, equivalently, if it admits a Kähler metric with positive Ricci

curvature. In [DPS94], the following structure result about the Albanese map on such M is proved.

Theorem 2.32 ([DPS94]). Let M be a compact Kähler manifold with nef tangent bundle TM . Let

M̃ be a finite étale cover of maximum irregularity q = q(M̃). Then

1. π1(M̃) = Z2q.

2. The Albanese map α : M̃ → A(M̃) is a smooth fibration over a q-dimensional torus with nef

relative tangent bundle.
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3. The fibers F of α are Fano manifolds with nef tangent bundle (i.e., K−1
F is ample, and TF is

nef).

The above theorem demonstrates, that the most essential step in the classification of Kähler

manifolds with nef tangent bundles, is the classification of projective Fano manifolds with nef tangent

bundle. The relevant part of the conjecture of [CP91] is the following statement.

Conjecture 2.33 (Campana-Peternell conjecture). Let M be a Fano manifold with nef tangent

bundle. Then M is a rational homogeneous manifolds.

In the last decades, Campana-Peternell conjecture has motivated large amount of research in

algebraic geometry. Mok’s variety of minimal rational tangents turned out particularly useful for

proving certain partial results related to the conjecture [Mok02; Mok08; Hwa13]. For more details,

we refer the reader to the survey [Mn+15] and references therein. Very recently, in [LOY18], the

authors studied manifolds with strictly nef exterior powers Λr(T 1,0M). They prove that such

manifolds are rationally connected, and for r = 1 the only manifolds satisfying the corresponding

positivity assumption are again the projective spaces. Rational homogeneous manifolds, are known

to admits a Kähler-Einstein metric. By using a regularization theorem for closed positive (1,1)-

currents, Demailly [Dem17] constructed weakly almost Kähler-Einstein metrics on a Fano manifold

with nef tangent bundle.

Let us briefly discuss the relation between Campana-Peternell conjecture and the generalized

Frankel’s conjecture. It is known that any rational homogeneous manifold has a nef tangent bundle.

Furthermore, there is a notion of nefness for holomorphic bundles on, not necessarily algebraic,

compact complex manifolds (see [DPS94]), and it is known that on (M, g, J)

(TM, g) >Gr 0⇒ TM is nef.

It implies that a Kähler manifold with a semipositive Griffiths curvature necessarily has a nef tangent

bundle. Hence, for a Fano manifold, the assumption of the generalized Frankel Conjecture 2.31

implies the assumption of Campana-Peternell Conjecture 2.33. The converse implication does not

hold. Indeed, by the generalized Frankel’s conjecture, the only Fano examples of Kähler manifolds

with TM >Gr 0 are rational symmetric spaces, and those are indeed rational homogeneous, however

not all rational homogeneous manifolds are symmetric. A simplest example of a non-symmetric
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rational homogeneous manifold is the flag manifold

U(3)/T 3 ' GL3(C)/B, B =


∗ ∗ ∗

0 ∗ ∗

0 0 ∗

 ⊂ GL3(C).

This manifolds admits a metric with dual-Nakano semipositive curvature; it also admits a Kähler-

Einstein metric, but by the discussion above they have to be different.

Large part of this thesis is motivated by the search for an appropriate differential-geometric

substitute of Campana-Peternell Conjecture 2.33, which would provide a characterization for rational

homogeneous manifolds. In Section 6.1, we propose differential-geometric notion of positivity for

a tangent bundle on an Hermitian manifold (M, g, J), which, conjecturally characterize rational

homogeneous manifolds among complex manifolds.
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Chapter 3

Hermitian Curvature Flow

We start this chapter with reviewing various metric flows in Hermitian geometry. Focusing on a

member of the family of Hermitian curvature flows, we compute the evolution equation of the Chern

curvature. An important feature of this equation is that it takes a very clear algebraic form with

the introduction of an auxiliary object — the torsion-twisted connection.

3.1 Geometric Flows in Hermitian Geometry

As we have discussed in the introduction, the Kähler-Ricci flow is a powerful tool for approaching

various geometric classification problems in Kähler geometry. However, on a general Hermitian

manifold (M, g, J) the Ricci curvature Ric(g) is not necessarily J-invariant, hence the Ricci flow does

not preserve the Hermitian condition. This observation motivated different authors to introduce

“Hermitian” modifications of the Kähler-Ricci flow. The idea is to use connections and tenors

canonically attached to an Hermitian manifold, e.g., the Chern connection ∇, its curvature Ω, and

torsion T , to define an evolution equation for a metric. Below we review several modifications of the

Ricci flow in the realm of Hermitian manifolds. All these generalizations share a common property

that they amount to the Kähler-Ricci flow if the initial data (M, g, J) is Kähler.

3.1.1 Chern-Ricci Flow

Recall that on a Kähler manifold (M, g, J, ω), the Ricci tensor Ric(X,Y ) defines a (1,1) form ρ =
√
−1Ricijdz

i ∧ dxj , which is closed and represents the class 2πc1(M) in cohomology. In local
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coordinates,

ρij =
√
−1∂i∂j log det g,

and the Kähler-Ricci flow is given by the equation

dgij
dt

= ∂i∂j log det g. (3.1)

In a series of papers [Gil11],[TW13],[GS15],[TW15] Gill, Tosatti, Weinkove, and Smith studied

the flow given by the same equation on a general Hermitian manifold. Let us review some of their

results.

Following the notations of Section 2.1.3, we can write (3.1) as

dg

dt
= −S(1).

The Chern-Ricci contraction S(1) does not longer coincide with the Ricci curvature, but we still

get the (1,1)-form
√
−1S

(1)

ij
dzi ∧ dxj representing the class 2πc1(M) in the Bott-Chern cohomology.

This flow is referred to as the Chern-Ricci flow. It was originally introduced by Gill in [Gil11], where

he proved the following result:

Theorem 3.1 ([Gil11]). If cBC1 (M) = 0 then, for any initial metric ω0 =
√
−1gijdz

i ∧ dzj, there

exists a solution ω(t) to the Chern-Ricci flow (3.1) for all time and the metrics ω(t) converge smoothly

as t→∞ to an Hermitian metric ω∞ satisfying ρ(ω∞) = 0.

The above theorem is a direct generalization of the corresponding statement for the Kähler-Ricci

flow, [Cao85]. In [TW15], Tosatti and Weinkove extend many results, known for the Kähler-Ricci

flow, to the case of Chern-Ricci flow. Among other results, they obtain the maximal time existence:

Theorem 3.2 ([TW15, Thm. 1.2]). There exists a unique maximal solution to the Chern-Ricci flow

on [0, T ), where

T = sup{t > 0 | there exists ψ ∈ C∞(M,R) with ω0 − tRic(ω0) +
√
−1∂∂ψ > 0}.

In [GS15], Gill and Smith gave an alternative description of the maximal time interval for the

Chern-Ricci flow. They proved the scalar curvature blow-up result, which is analogous to the

statement about the long time existence of the Kähler-Ricci flow.
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Theorem 3.3 ([GS15, Thm. 1.1]). Let M be a compact complex manifold of complex dimension n

and ω0 an Hermitian metric. Then ω(t) exists on the maximal interval [0, T ) and either T =∞ or

lim sup
t→T

(sup
M

(R(g(t))) =∞,

where R denotes the scalar curvature of the Chern connection.

Recently, Yang [Yan16] via an explicit computation on Hopf manifolds, observed that the Chern-

Ricci flow does not preserve Griffiths semipositivity. One of the principle motivations for the present

thesis is to find a metric flow, which preserves some natural curvature positivity conditions on general

non-Kähler manifolds, e.g., Griffiths/dual-Nakano semipositivity.

3.1.2 Family of Hermitian Curvature Flows

In [ST11], Streets and Tian defined a family of Hermitian curvature flows (HCF) on an arbitrary

Hermitian manifold (M, g, J). Under this flow, the metric g is evolved according to the equation.

dg

dt
= −S(2) −Q, (3.2)

where S
(2)

ij
= gmnΩmnij is the second Chern-Ricci curvature of the Chern connection, and Q = Q(T )

is an arbitrary symmetric term of type (1,1), quadratic in T . In [ST11], the authors prove short

time existence for this flow and derive basic long time blow-up and regularity properties. Let us

review these results.

Proposition 3.4 ([ST11, Prop. 5.1]). Given (M, g0, J) a compact complex manifold, there exists a

unique solution to HCF (3.2) with initial condition g0 on [0, ε) for some ε > 0.

This proposition follows from the fact that the second order differential operator Φ: g 7→ S(2) +Q

is strictly elliptic for any choice of Q.

Proposition 3.5 ([ST11, Prop. 5.2]). Given (M, g0, J) a compact complex manifold with Kähler

metric g0, let g(s) denote the solution to HCF (3.2) with initial condition g0, which exists on [0, T ).

Then for all t ∈ [0, T ), g(t) is Kähler and is a solution to the Kähler-Ricci flow.

Similarly to other nonlinear parabolic evolution equations, HCF regularizes the initial data for

any positive time t > 0:
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Theorem 3.6 ([ST11, Thm. 7.3]). Let (M, g(t), J) be a solution to HCF for which the maximum

principle holds. Then for each α > 0 and every m ∈ N there exists a constant Cm depending only

on m,dimM , and max{α, 1} such that if

|Ω|C0(g(t)) 6 K, |∇T |C0(g(t)) 6 K, |T |2C0(g(t)) 6 K

for all x ∈M and t ∈ [0, α/K], then

|∇mΩ|C0(g(t)) 6
CmK

tm/2
, |∇m+1T |C0(g(t)) 6

CmK

tm/2
.

As a corollary of this regularity result, we have a basic blow-up result about long-time existence.

Corollary 3.7. There exists a constant c = c(n) such that given (M, g, J) a complex manifold with

Hermitian metric g, the solution g(t) to HCF with initial condition g exists for

t ∈ [0, c(n)/max(|Ω|C0(g(t)), |∇T |C0(g(t)), |T |2C0(g(t)))].

Moreover the solution exists on a maximal time interval [0, tmax), and if tmax <∞ then

lim sup
t→tmax

max(|Ω|C0(g(t)), |∇T |C0(g(t)), |T |2C0(g(t))) =∞.

While these regularization and blow-up statements are similar to the ones for the standard Ricci

flow, they require much stronger assumptions on the behavior of the metric along the flow (3.2).

Namely, to deduce the long time existence, we have to control not only the norm of the Chern

curvature tensor, but also the norms of the torsion and its covariant derivative. The expectation

is that, under additional geometric assumptions on (M, g, J) and for an appropriate choice of the

torsion terms in the family of flows (3.2), one will be able to significantly improve the results of

Theorem 3.6 and Corollary 3.7, similarly to Theorems 3.2 and 3.3.

3.1.3 Specializations of the HCF Family

Hermitian curvature flows form a family of evolution equations for a metric, and various members

of this family have different geometric and analytic properties. In this section we describe several

specializations of the general HCF family (3.2).

In the original paper [ST11], Streets and Tian find a unique Hilbert-type functional F(g) which

yields S(2) as the leading term in the Euler–Lagrange equation. Computing the variation of this
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functional along a one parameter family of metrics, authors arrive at a version of the HCF family

given by

dg

dt
= −S(2) +

1

2
Q1 − 1

4
Q2 − 1

2
Q3 +Q4, (3.3)

where

Q1
ij

= gpsg
mnT pimT

s
jn
,

Q2
ij

= gmngpsTmpjTnsi,

Q3
ij

= TmimT
n
jn
,

Q4
ij

=
1

2
gps(TmpmTsji + TnsnTpij).

Any critical metric for F(g) turns out to be scale-invariant under (3.3) (see [ST11, Prop. 3.3]).

An import class of Hermitian metrics between Kähler metrics and general Hermitian metrics, is

the class of pluriclosed metrics (strongly Kähler with torsion).

Definition 3.8. An Hermitian metric on a complex manifold is called pluriclosed, if

∂∂ω = 0,

where ω is the fundamental (1,1)-form.

In [ST10], Streets and Tian observed that the flow

dgij
dt

= −S(2)

ij
+Q1

ij

preserves the subspace of pluriclosed metrics. In a subsequent paper [ST13], they found a clear

interpretation for this flow in terms of the Bismut-Ricci form on (M, g, J) and related the pluriclosed

flow to the renormalization group flow in physics. This interpretation allows to prove that the

pluriclosed flow is the gradient flow of the first eigenvalue of a certain Schrödinger operator. In

further papers [ST12; Str17; AS17] authors found an interpretation of the pluriclosed flow in the

context of generalized geometry.

In this thesis, we focus on a different member of the Hermitian curvature flow family. Namely,

the main object of our study is the following specification of the HCF (3.2)

dgij(t)

dt
= −S(2)

ij
−Qij (3.4)
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where

S
(2)

ij
= gmnΩmnij and Qij =

1

2
gmngpsTpmjTsni

are the second Chern-Ricci curvature and a specific quadratic torsion term for g = g(t). By Propo-

sition 3.4, there exists a unique solution to equation (3.4) on a maximal time interval [0, tmax). By

slight abuse of notation, in what follows, this flow is referred to as the HCF. The choice of the

torsion quadratic term Q(T ) is motivated by a very special evolution of the Chern curvature under

this flow, which we compute further in this chapter.

Let us derive the coordinate expression for the HCF evolution term

Ψij = gmnΩmnij +
1

2
gmngpsTmpjTnsi,

on (M, g, J). To simplify subsequent applications of this computation we provide a formula for the

g-dual of Ψij

Ψij := gingmjΨmn,

i.e., we use metric g to identify Ψ with a section of Sym1,1(T 1,0M).

Proposition 3.9.

Ψij = gmn∂m∂ng
ij − ∂mgin∂ngmj .

Proof. In local coordinates, the Christoffel symbols for the Chern connection on (TM, g) are

Γkij = gkl∂igjl.

Hence for the Chern curvature we have:

gmlΩ k
ijm

= −gml∂j
(
gkn∂igmn

)
= −gml∂j

(
−gkngmsgpn∂igps

)
= gml∂j

(
gms∂ig

ks
)

=

= gml∂jgms∂ig
ks + ∂i∂jg

kl = −gps∂jg
pl∂ig

ks + ∂i∂jg
kl.

For the torsion tensor T imp we compute:

T imp = gil(∂mgpl − ∂pgml) = gml∂pg
il − gpl∂mg

il.
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Therefore

1

2
gmngpsT impT

j
ns =

1

2
gmngps(gml∂pg

il − gpl∂mg
il)(gkn∂sg

kj − gks∂ngkj) =

= gpsgkl∂pg
il∂sg

kj − ∂pgin∂ngpj .

Using the above formulas together we get the expression for Ψij .

Ψij = gmn∂m∂ng
ij − ∂pgis∂sgpj .

After relabeling the indices we get the stated formula.

Combining Proposition 3.9 and the equation of the HCF flow (3.4), we get the following corollary.

Corollary 3.10. Let (M,J, g0) be an Hermitian manifold. Assume that g̃(t) ∈ Sym1,1(TM) is a

solution to the PDE on M × [0, tmax)
dg̃ij

dt
= g̃mn∂m∂ng̃

ij − ∂mg̃in∂ng̃mj ,

g̃(0) = g−1
0 ,

(3.5)

such that g̃ij(t) is positive definite for t ∈ [0, tmax). Then g(t) := g̃−1(t) is the solution to the HCF

on M .

An interesting feature of equation (3.5) is that its right-hand side depends only on g̃ and not on

g̃−1. In particular, there might exist a solution g̃(t) starting with a degenerate or indefinite form. It

would be interesting to find a geometric interpretation of such solution. However in this case, the

equation is not parabolic anymore.

3.2 Evolution Equations for the Curvature under the HCF

In this section, we compute the evolution of the Chern curvature under the HCF (3.4). Let δg = k

be an arbitrary variation of the Hermitian metric. Let us compute the first variation of the Chern

connection, torsion, and curvature. Note, that unlike ∇ itself, its variation δ∇ is a tensor.

Proposition 3.11 ([ST11, Lemma 10.1], [Ust16, Prop. 2.1]). Under the variation of the metric

δg = k, the variation δ∇ of the Chern connection is given by the formula

(δ∇)ξη = (δ∇)ξη = 0, g
(
(δ∇)ξη, ζ

)
= ∇ξk(η, ζ).
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Proof. To prove the first formula, we just notice that ∇ξη = ∂ξζ is completely defined by the

holomorphic structure on the bundle T 1,0M and is independent of the choice of g.

To prove the second formula, let us take the variation of the identity

ξ ·g(η, ζ) = g(∇ξη, ζ) + g(η,∇ξζ),

where ξ, η, ζ ∈ T 1,0M .

ξ ·k(η, ζ) = k(∇ξη, ζ) + k(η,∇ξζ) + g((δ∇)ξη, ζ).

Collecting the expressions involving k on the one side, we get the desired identity.

Proposition 3.11 immediately imply the variation formula for the torsion.

Proposition 3.12 ([ST11, Lemma 10.4], [Ust16, Prop. 2.2]). With the same notations as in Propo-

sition 3.11, the variation of the torsion tensor T (ξ, η) is given by the formula

g((δT )(ξ, η), ζ) = ∇ξk(η, ζ)−∇ηk(ξ, ζ).

Proposition 3.13 ([ST11, Lemma 10.2], [Ust16, Prop. 2.3]). With the same notations as in Propo-

sition 3.11, the variations of the (3,1) and (4,0) Chern curvatures are given by the formulas

g
(
(δΩ)(ξ, η)ζ, ν

)
= −∇η∇ξk(ζ, ν) +∇∇ηξk(ζ, ν),

(δΩ)(ξ, η, ζ, ν) = k
(
Ω(ξ, η)ζ, ν

)
−∇η∇ξk(ζ, ν) +∇∇ηξk(ζ, ν).

Proof. Clearly the second formula follows from the first one. Before we start proving the first

formula, note that for any ζ, ν ∈ Γ(T 1,0M) we have [ζ, ν] = ∇ζν −∇νζ, since the (1, 1)-part of the

torsion vanishes. In particular, the (1, 0)-part of [ζ, ν] is −∇νζ.
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We have Ω(ξ, η)ζ = [∇ξ,∇η]ζ −∇[ξ,η]ζ. Using the result of Proposition 3.11 we get

g
(
(δΩ)(ξ, η)ζ, ν

)
=g
(
[(δ∇)ξ,∇η]ζ, ν

)
+ g
(
[∇ξ, (δ∇)η]ζ, ν

)
− g((δ∇)[ξ,η]ζ, ν)

=g
(
[(δ∇)ξ,∇η]ζ, ν

)
+∇∇ηξk(ζ, ν)

=g
(
(δ∇)ξ∇ηζ, ν

)
− g
(
∇η(δ∇)ξζ, ν

)
+∇∇ηξk(ζ, ν)

=∇ξk(∇ηζ, ν)− η ·g
(
(δ∇)ξζ, ν

)
+ g
(
(δ∇)ξζ,∇ην

)
+∇∇ηξk(ζ, ν)

=∇ξk(∇ηζ, ν)− η ·∇ξk(ζ, ν) +∇ξk(ζ,∇ην) +∇∇ηξk(ζ, ν)

=−∇η∇ξk(ζ, ν) +∇∇ηξk(ζ, ν).

Here in the second equality we use the facts that (δ∇)η vanishes on (1,0)-vectors and that (δ∇)[ξ,η]ζ =

−(δ∇)∇ηξζ.

Now, our goal is to derive the evolution equation for the Chern curvature under the HCF (3.4).

The entire computation is based on Proposition 3.13 and uses solely Bianchi identities (2.5) and the

commutation of covariant derivatives.

Proposition 3.14. Assume that g(t) solves the HCF (3.4) on [0; tmax). Then the tensor Ω(t) :=

Ωg(t) evolves according to the equation

d

dt
Ωijkl = gmn

(
∇m∇nΩijkl + T r

nj
∇mΩirkl + T qmi∇nΩqjkl

+ T qmiT
r
nj

Ωqrkl + gps(Tpml∇nΩijks + Tsnk∇mΩijpl

+ TpmlT
r
nj

Ωirks + TsnkT
q
miΩqjpl + gqrTsnkTqmlΩijpr)

)
+ gmngps(ΩijmsΩpnkl + ΩmjksΩinpl − ΩmjplΩiskn +

1

2
∇iTpml∇jTsnk)

− gps(S(2)

pl
+Qpl)Ωijks − g

psS
(2)

pj
Ωiskl − g

psQksΩijpl.

Proof. The coordinate vector fields ei = ∂/∂zi are holomorphic, so we have ∇iej = ∇jei = 0. Hence

Proposition 3.13 implies that

∂

∂t
Ωijkl = ∇j∇i

(
S

(2)

kl
+Qkl

)
− gps(S(2)

pl
+Qpl)Ωijks.

We compute separately ∇j∇iS
(2)

kl
and ∇j∇iQkl.

Step 1. Compute ∇j∇iS
(2)

kl
.
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Let us first modify term ∇j∇iS
(2)

kl
by applying the second Bianchi identity.

∇j∇iS
(2)

kl
= gmn∇j∇iΩmnkl = gmn∇j(∇mΩinkl + T pmiΩpnkl)

= gmn(∇j∇mΩinkl +∇jT
p
mi Ωpnkl + T pmi∇jΩpnkl).

(3.6)

Next, we commute ∇j with ∇m.

∇j∇mΩinkl =∇m∇jΩinkl + Ω p

mji
Ωpnkl + Ω s

mjn
Ωiskl + Ω p

mjk
Ωinpl + Ω s

mjl
Ωinks

=∇m∇jΩinkl + gps
(
ΩmjisΩpnkl − ΩmjpnΩiskl + ΩmjksΩinpl − ΩmjplΩinks

)
.

Now, we again apply the second Bianchi identity to the first term on the right hand side of the latter

expression.

∇m∇jΩinkl = ∇m(∇nΩijkl + T s
nj

Ωiskl)

= ∇m∇nΩijkl +∇mT snjΩiskl + T s
nj
∇mΩiskl.

Next, we use twice the first Bianchi identity

∇jT
p
mi = Ωp

ijm
− Ωp

mji
= gps(Ωijms − Ωmjis),

∇mT snj = Ωs
mnj
− Ωs

mjn
= gps(Ωmjpn − Ωmnpj),

and once the second Bianchi identity:

∇jΩpnkl = ∇nΩpjkl + T s
nj

Ωpskl.

Collecting everything in (3.6) we get

∇j∇iS
(2)

kl
= gmn(∇m∇nΩijkl + T s

nj
∇mΩiskl + T pmi∇nΩpjkl + T pmiT

s
nj

Ωpskl)

+gmngps(ΩijmsΩpnkl + ΩmjksΩinpl − ΩmjplΩinks)− g
psS

(2)

pj
Ωiskl.

(3.7)

Step 2. Compute ∇j∇iQkl.

2∇j∇iQkl = gmngps∇j∇i(TpmlTsnk)

= gmngps(∇iTpml∇jTsnk +∇jTpml∇iTsnk + Tpml∇j∇iTsnk +∇j∇iTpmlTsnk).

We now compute ∇j∇iTsnk and ∇j∇iTpml using Bianchi identities.

∇j∇iTsnk = ∇j(Ωinks − Ωiskn) = ∇nΩijks + T r
nj

Ωirks −∇sΩijkn − T
r
sj

Ωirkn.

37



CHAPTER 3. HERMITIAN CURVATURE FLOW

Using the fact Tpml is anti-symmetric in m and p we get

gmngpsTpml∇j∇iTsnk =gmngpsTpml(∇nΩijks + T r
nj

Ωirks −∇sΩijkn − T
r
sj

Ωirkn)

=2gmngpsTpml(∇nΩijks + T r
nj

Ωirks).

(3.8)

To compute ∇j∇iTpml we start with commuting derivatives.

∇j∇iTpml =∇i∇jTpml + Ω q

ijp
Tqml + Ω q

ijm
Tpql + Ω r

ijl
Tpmr

=∇i∇jTpml + gqr(ΩijprTqml − ΩijmrTqpl − ΩijqlTpmr).

As in (3.8) we rewrite gmngps∇i∇jTpmlTsnk and use the fact Tsnk is anti-symmetric in n and s.

gmngps∇j∇iTpmlTsnk

= gmngpsTsnk
(
2(∇mΩijpl + T qmiΩqjpl) + gqr(ΩijprTqml − ΩijmrTqpl − ΩijqlTpmr)

)
= gmngpsTsnk

(
2(∇mΩijpl + T qmiΩqjpl) + gqr(2ΩijprTqml − ΩijqlTpmr)

)
= 2gmngpsTsnk

(
∇mΩijpl + T qmiΩqjpl + gqrΩijprTqml

)
− 2gqrΩijqlQkr.

(3.9)

Expressions (3.8), (3.9), and gmngps(∇iTpml∇jTsnk +∇jTpml∇iTsnk) together give

2∇j∇iQkl = gmngps(∇iTpml∇jTsnk +∇jTpml∇iTsnk)− 2gqrΩijqlQkr

+ 2gmngps
(
Tpml∇nΩijks + Tsnk∇mΩijpl

+ TpmlT
r
nj

Ωirks + TsnkT
q
miΩqjpl + gqrTsnkTqmlΩijpr

)
.

(3.10)

Step 3. Collect all terms together.

Before we sum up terms ∇j∇iS
(2)

kl
and ∇j∇iQkl, let us note that

gmngps∇jTpml∇iTsnk = gmngps∇jTpml∇iTsnk = gmngps(Ωmjpl − Ωpjml)(Ωinks − Ωiskn)

= gmngps(ΩmjplΩinks + ΩpjmlΩiskn − ΩmjplΩiskn − ΩpjmlΩinks)

= 2gmngps(ΩmjplΩinks − ΩmjplΩiskn).
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Equations (3.7), (3.10) with the term −gps(S(2)

pl
+Qpl)Ωijks give

d

dt
Ωijkl = ∇j∇i

(
S

(2)

kl
+Qkl

)
− gps(S(2)

pl
+Qpl)Ωijks

= gmn
(
∇m∇nΩijkl + T r

nj
∇mΩirkl + T qmi∇nΩqjkl

+ T qmiT
r
nj

Ωqrkl + gps(Tpml∇nΩijks + Tsnk∇mΩijpl

+ TpmlT
r
nj

Ωirks + TsnkT
q
miΩqjpl + gqrTsnkTqmlΩijpr)

)
+ gmngps(ΩijmsΩpnkl + ΩmjksΩinpl − ΩmjplΩiskn +

1

2
∇iTpml∇jTsnk)

− gps(S(2)

pl
+Qpl)Ωijks − g

psS
(2)

pj
Ωiskl − g

psQksΩijpl.

(3.11)

The evolution equation for Ω in the form (3.11) contains many different terms and is difficult to

analyze directly. However, it turns out that it could be significantly simplified and reinterpreted in

invariant coordinate-free terms, after applying the following tricks:

1. Rise the last two indices of Ωijkl via g and consider the Chern curvature tensor as a section of

Sym1,1(End(T 1,0M));

2. Identify within equation (3.11) the Laplacian
(
∆DΩ

) lk

ij
of a wisely chosen connection D on

Sym1,1(End(T 1,0M)) (see Definition 2.6).

Connection D of part 2 comes from a connection ∇T on TM , which we refer to as the torsion-twisted

connection, and discuss in detail in the next section.

3.3 Torsion-twisted Connection

Let (M, g, J) be an Hermitian manifold with the Chern connection ∇. In this section we define a

torsion-twisted connection ∇T on the tangent bundle TM and study its properties.

3.3.1 Motivation

The main motivation for introducing the torsion-twisted connection is purely algebraic. We are

aiming at finding a connection on the space of curvature tensors Λ1,1(M) ⊗ Λ1,1(M), such that

its Laplacian absorbs all the first order derivatives of Ω in the evolution equation for Ω under the

HCF (3.11).
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Using the formula for the Chern Laplacian (2.3) ∆ = ∆∇, we note that the evolution term of

equation (3.11) is of a form

∆Ωijkl + gmn
(
T r
nj
∇mΩirkl + T qmi∇nΩqjkl − g

ps(Tmpl∇nΩijks + Tnsk∇mΩijpl)
)

+ F0, (3.12)

where the term F0 does not contain any derivatives of Ω. Therefore, by Lemma 2.7, if we set

A ∈ Λ1
(
M,End(Λ1,1(M)⊗ Λ1,1(M))

)
to be a 1-form acting on Ω ∈ Λ1,1(M)⊗ Λ1,1(M) as

AmΩijkl : = T qmiΩqjkl − g
psTmplΩijks,

AnΩijkl : = T r
nj

Ωirkl − g
psTnskΩijpl,

(3.13)

then the Laplacian ∆∇+A of the connection ∇ + A on Λ1,1(M) ⊗ Λ1,1(M) will pick up all the

derivatives in equation (3.12), and the evolution term will take form

∆∇+AΩijkl + F̃0

for some new zero-order term F̃0.

Equation (3.13) suggests that we should consider the following two connections on TM (see

[Ust16, Def. 3.5], [Ust17b, §1]).

Definition 3.15 (Torsion-twisted connections). Define ∇T ,∇T? to be two torsion-twisted connec-

tions on TM given by the identities

∇TXY = ∇XY − T (X,Y ),

∇T
?

X Y = ∇XY + g(Y, T (X, · ))?,

where X,Y, Z ∈ TM , ∇ is the Chern connection, and ? : T ∗M → TM is the isomorphism induced

by g. Equivalently, in the coordinates, for a vector field ξ = ξp ∂
∂zp one has

∇Ti ξp = ∇iξp − T pijξ
j , ∇T

j
ξp = ∇jξ

p,

∇T
?

i ξp = ∇iξp, ∇T
?

j
ξp = ∇jξ

p + gpsTjskξ
k.

As usual, we extend ∇T and ∇T? to the connections on all vector bundles associated with T 1,0M

via the Leibniz rule.

Remark 3.16. Both connections ∇T and ∇T? do not preserve g, unless (M, g, J) is Kähler. However,
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it is easy to check that g considered as a section of T ∗M ⊗ T ∗M is parallel with respect to the

connection ∇T ⊗ id + id⊗∇T? , i.e., for any vector fields X,Y, Z, we have

X ·g(Y,Z) = g(∇TXY,Z) + g(Y,∇T
?

X Z).

In other words, ∇T? is dual conjugate to ∇T via g.

With the use of Definition 3.15, connection ∇+A on Λ1,1(M)⊗Λ1,1(M) can be interpreted as the

connection acting as ∇T on the first two arguments and acting as ∇T? on the last two arguments.

Taking into account Remark 3.16, we observe that

((∇+A)Ω)ijkl = gksgpl(∇
TΩ) sp

ij
,

and

(∆∇+AΩ)ijkl = gksgpl(∆∇T Ω) sp

ij
.

These identities indicate that, from the point of view of the HCF, it is more natural to consider

the Chern curvature Ω as a section of Sym1,1(End(T 1,0M)) ⊂ End(T 1,0M) ⊗ End(T 0,1M), by

rising the last two indices of Ωijkl. Then the connection ∇ + A on Λ1,1(M) ⊗ Λ1,1(M) defined via

equation (3.13) pulls back to the connection ∇T on End(T 1,0M)⊗End(T 0,1M). Below we deal only

with the connection ∇T and refer to it as the torsion-twisted connection.

3.3.2 Curvature of the Torsion-twisted Connection

In this section we provide some basic properties of the torsion-twisted connection ∇T , and compute

its curvature.

First, we note that ∇T is compatible with the holomorphic structure on T 1,0M , i.e., its (0,1) type

part coincides with ∂. Indeed, since the (1,1) type part of the torsion tensor of a Chern connection

vanishes, we have

∇Tη ξ = ∇ηξ − T (ξ, η) = ∇ηξ = ∂ηξ.

In particular, any ∇T -parallel section of a holomorphic vector bundle associated to T 1,0M is auto-

matically holomorphic. Let Ω∇T denote the curvature of the torsion-twisted connection.
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Proposition 3.17 (Torsion-twisted curvature). Ω∇T is of the type (2, 0)+(1, 1) and has components

Ω∇T (ξ, η)ζ = Ω(ζ, η)ξ,

Ω∇T (ξ, η)ζ = ∇ζT (ξ, η),

where ξ, η, ζ ∈ T 1,0M .

Proof. The torsion-twisted connection is holomorphic, therefore the type (0,2) part of curvature

vanishes: Ω∇T
(0,2) = ∂2 = 0.

For a vector w ∈ TCM , define an endomorphism

Tw : TCM → TCM, v 7→ T (w, v).

Since the (1,1) part of T vanishes, for ξ ∈ T 1,0M , the endomorphism Tξ is zero on T 0,1M and maps

T 1,0M into T 1,0M . Now, assume that ξ, η, ζ are local coordinate holomorphic vector fields. Then

for the type (1,1) part we have

Ω∇T (ξ, η)ζ=[∇ξ − Tξ,∇η − Tη]ζ =
(
Ω(ξ, η)− [∇ξ, Tη] + [∇η, Tξ] + [Tξ, Tη]

)
ζ

=Ω(ξ, η)ζ +∇η(Tξζ)=Ω(ξ, η)ζ + (∇ηT )(ξ, ζ),

where we use the facts that vector fields ξ and η commute, and that ∇η annihilates ξ and ζ. By the

first Bianchi identity, the final expression equals Ω(ζ, η)ξ.

Similarly, we compute the (2,0) part of the curvature Ω∇T , using the fact that the (2,0) part of

the Chern curvature vanishes.

Ω∇T (ξ, η)ζ = [∇ξ − Tξ,∇η − Tη]ζ =
(
[∇ξ,∇η] + [∇η, Tξ]− [∇ξ, Tη] + [Tξ, Tη]

)
ζ

= ∇η(T (ξ, ζ))− T (ξ,∇ηζ)−∇ξ(T (η, ζ)) + T (η,∇ξζ) + T (ξ, T (η, ζ))− T (η, T (ξ, ζ))

= ∇ξT (ζ, η) +∇ηT (ξ, ζ) + T (∇ηξ −∇ξη, ζ) + T (ξ, T (η, ζ))− T (η, T (ξ, ζ))

= ∇ξT (ζ, η) +∇ηT (ξ, ζ) + T (T (η, ξ), ζ) + T (T (ζ, η), ξ) + T (T (ξ, ζ), η) = ∇ζT (ξ, η),

where in the last identity we use the (3,0) type part of the first Bianchi identity.

Remark 3.18. By the previous proposition, endomorphism u ∈ End(T 1,0M) lies in the kernel of the

bilinear form 〈Ω, · ⊗ · 〉tr if and only if tr(u ◦ Ω∇T (ξ, η)) = 0 for any ξ, η ∈ T 1,0M .

Corollary 3.19 (Torsion-twisted Ricci form). The Ricci form of the torsion twisted connection

ρ∇T :=
√
−1trEnd(T 1,0M)Ω∇T ∈ Λ2(M,C)
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is of type (2, 0) + (1, 1) and has components

(ρ∇T )(1,1) =
√
−1Ω k

kji
dzi ∧ dzj ,

(ρ∇T )(2,0) =

√
−1

2
∇kT kijdzi ∧ dzj .

Definition 3.20 (Holonomy group of ∇T ). Define Hol0∇T ⊂ GL(T 1,0M) to be the restricted holon-

omy group of ∇T and denote by holR∇T ⊂ End(T 1,0M) its Lie algebra. Let

hol∇T := spanC(holR∇T ⊂ End(T 1,0M))

be the C-span of holR∇T in End(T 1,0M).

3.3.3 Reinterpreting the Evolution Equations for the Curvature

It turns out that with the use of the torsion-twisted connection, the evolution equation for Ω under

the HCF takes particularly simple and clear form. To deduce this expression, we rewrite (3.11) as

the evolution equation for Ω = Ω lk
ij

. By (3.11), we have

d

dt
Ωijkl = gmn

(
∇m∇nΩijkl + T r

nj
∇mΩirkl + T qmi∇nΩqjkl

+ T qmiT
r
nj

Ωqrkl + gps(Tpml∇nΩijks + Tsnk∇mΩijpl

+ TpmlT
r
nj

Ωirks + TsnkT
q
miΩqjpl + gqrTsnkTqmlΩijpr)

)
+ gmngps(ΩijmsΩpnkl + ΩmjksΩinpl − ΩmjplΩiskn +

1

2
∇iTpml∇jTsnk)

− gps(S(2)

pl
+Qpl)Ωijks − g

psS
(2)

pj
Ωiskl − g

psQksΩijpl.

Therefore for Ω lk
ij

= Ωijabg
algkb we have

d

dt
Ω lk
ij

=gmn
(
∇m∇nΩ lk

ij
+ T r

nj
∇mΩ lk

ir + T qmi∇nΩ lk
qj

+ T qmiT
r
nj

Ω lk
qr + T kpm∇nΩ lp

ij
+ T lsn∇mΩ sk

ij

+ T kpmT
r
nj

Ω lp
ir + T lsnT

q
miΩ

sk
qj

+ T lsnT
k
qmΩ sq

ij

)
+ Ω np

ij
Ω lk
pn + gpsg

mnΩ lp

mj
Ω sk
in − Ω sk

mj
Ω lm
is +

1

2
gmngps∇iT kpm∇jT

l
sn

− gpsS(2)

pj
Ω lk
is + gplS

(2)
ps Ω sk

ij
.

(3.14)

Most of the terms in (3.14) come from the torsion-twisted Laplacian:
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Lemma 3.21. The torsion-twisted Laplacian of the Chern curvature tensor Ω lk
ij

equals

∆∇T Ω lk
ij

= gmn
(1

2
∇m∇nΩ lk

ij
+

1

2
∇n∇mΩ lk

ij

+ T r
nj
∇mΩ lk

ir + T qmi∇nΩ lk
qj

+ T qmiT
r
nj

Ω lk
qr + T kpm∇nΩ lp

ij
+ T lsn∇mΩ sk

ij

+ T kpmT
r
nj

Ω lp
ir + T lsnT

q
miΩ

sk
qj

+ T lsnT
k
qmΩ sq

ij

+
1

2
(∇nT pmiΩ

lk
pj
−∇nT kmpΩ

lp

ij
+∇mT snjΩ

lk
is −∇mT lnsΩ sk

ij
)
)
.

Proof. Applying Lemma 2.7 to ∇T = ∇− T , we obtain

∆∇T Ω = (∆− 2trg(T ◦ ∇) + trg(T ◦ T )− div T )Ω,

where for w ∈ TCM endomorphism Tw : TCM → TCM,v 7→ T (w, v) is defined on TCM as in

Proposition 3.17 and is extended to the space of curvature type tensors End(T 1,0M)⊗End(T 0,1M)

as a derivation. Then we have

∆Ω lk
ij

= gmn
1

2
(∇m∇nΩ lk

ij
+∇n∇mΩ lk

ij
),

−2trg(T ◦ ∇)Ω lk
ij

= gmn(T r
nj
∇mΩ lk

ir + T qmi∇nΩ lk
qj
− T kmp∇nΩ lp

ij
− T lns∇mΩ sk

ij
),

trg(T ◦ T )Ω lk
ij

= gmn(T qmiT
r
nj

Ω lk
qr − T kmpT rnjΩ

lp
ir − T

l
nsT

q
miΩ

sk
qj

+ T lnsT
k
mqΩ

sq

ij
),

−(div T )Ω lk
ij

=
1

2
gmn

(
∇nT pmiΩ

lk
pj
−∇nT kmpΩ

lp

ij
+∇mT snjΩ

lk
is −∇mT lnsΩ sk

ij

)
.

Collecting the four summands together, we get the stated identity.

With the use of the Laplacian ∆∇T of ∇T and its curvature Ω∇T (Proposition 3.17), one gets

a simple evolution equation for the Chern curvature Ω lk
ij

under the HCF. Before we formulate it,

let us introduce a final bit of notation. The curvature of the torsion-twisted connection Ω∇T is a

section of Λ2(M,C)⊗ End(T 1,0M). Using the metric contraction on Λ2(M,C)⊗ Λ2(M,C), we can

take the trace of

Ω∇T ⊗ Ω∇T ∈ Λ2(M,C)⊗ End(T 1,0M)⊗ Λ2(M,C)⊗ End(T 1,0M)

and define a tensor

trΛ2(M)(Ω∇T ⊗ Ω∇T ) ∈ End(T 1,0M)⊗ End(T 0,1M).

An important property of the contraction trΛ2(M)(Ω∇T ⊗ Ω∇T ) is that it is always a semipositive
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element of Sym1,1(End(T 1,0M)) ⊂ End(T 1,0M)⊗ End(T 0,1M).

At this point, we are ready to formulate the evolution equation for Ω in invariant terms. This

equation is the key ingredient, required for formulating and proving the maximum principles for Ω.

Proposition 3.22. Under the HCF, Ω ∈ Sym1,1(End(T 1,0M)) ⊂ End(T 1,0M) ⊗ End(T 0,1M)

evolves by equation

d

dt
Ω = ∆∇T Ω + Ω# + trΛ2(M)(Ω∇T ⊗ Ω∇T ) + aduΩ (3.15)

where u ∈ End(T 1,0M) is given by uji = − 1
2Ω nj

in .

Proof. Combining, equation (3.14) and Lemma 3.21, we get

d

dt
Ω lk
ij

= ∆∇T Ω lk
ij

+
1

2
gmn[∇m,∇n]Ω lk

ij

+ Ω np

ij
Ω lk
pn + gpsg

mnΩ lp

mj
Ω sk
in − Ω sk

mj
Ω lm
is

+
1

2
gmngps∇iT kpm∇jT

l
sn − gpsS

(2)

pj
Ω lk
is + gplS

(2)
ps Ω sk

ij

− 1

2
(∇nT pmiΩ

lk
pj
−∇nT kmpΩ

lp

ij
+∇mT snjΩ

lk
is −∇mT lnsΩ sk

ij
).

By Proposition 2.28, (Ω#) lk
ij

= Ω np

ij
Ω lk
pn − Ω sk

mj
Ω lm
is .

Next, by a direct application of the first Bianchi identity,

1

2
gmn[∇m,∇n]Ω lk

ij
− 1

2
(∇nT pmiΩ

lk
pj
−∇nT kmpΩ

lp

ij

+∇mT snjΩ
lk

is −∇mT lnsΩ sk
ij

)− gpsS(2)

pj
Ω lk
is + gplS

(2)
ps Ω sk

ij

=
1

2

(
−Ω np

in Ω lk
pj
− Ω sm

mj
Ω lk
is + Ω lm

ms Ω sk
ij

+ Ω nk
pn Ω lp

ij

)
= (aduΩ) lk

ij
.

for upi = − 1
2Ω np

in .

Finally, the formulas for Ω∇T (Proposition (3.17)) imply that the terms

gpsg
mnΩ lp

mj
Ω sk
in and

1

2
gmngps∇iT kpm∇jT

l
sn

add up to trΛ2(M)(Ω∇T ⊗ Ω∇T ).

Remark 3.23. Equation (3.15) is a direct generalization of the evolution of the Riemannian curvature

under the Ricci/Kähler-Ricci flow. If the underlying Hermitian manifold (M, g, J) is Kähler, the

torsion-twisted curvature Ω∇T coincides with Ω, the Laplacian ∆∇T is the Riemannian Laplacian,
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and −2u is the Ricci operator, so (3.15) takes a familiar form

d

dt
Ω = ∆Ω + Ω# + Ω2 + aduΩ,

where one can get rid of the last term aduΩ by using the moving frame trick, [Ham86].
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Chapter 4

Preservation of Curvature

Positivity along the HCF

This is the core chapter of the thesis. We start with reviewing Hamilton’s maximum principle for ten-

sors and reprove it in a slightly more general setup of non-Riemannian connections. Next, for every

GL(T 1,0M)-invariant subset S ⊂ End(T 1,0M) and a nice invariant function F : End(T 1,0M) → R,

we define a convex subset C(S, F ) ⊂ Sym1,1(End(T 1,0M)) of Chern curvature tensors. Using Hamil-

ton’s maximum principle, we prove that the HCF preserves all sets C(S, F ). Furthermore, following

the framework of Brendle and Schoen, we prove a version of the strong parabolic maximum princi-

ple for C(S, F ). Finally, we provide a list of concrete examples of curvature positivity conditions,

preserved by the HCF, which includes dual-Nakano semipositivity, Griffiths semipositivity, semipos-

itivity ot the second scalar curvature. The presentation of this chapter follows [Ust17b].

4.1 Refined Hamilton’s Maximum Principle

In this section we prove a modification of Hamilton’s maximum principle for tensors. In special

cases it was used in [Ham82] to control Ricci positivity in dimension 3 and in [Ban84] to prove that

semipositivity of the bisectional holomorphic curvature is preserved. After a general formulation by

Hamilton in [Ham86], maximum principle for tensor was used as a key step in many applications

of the Ricci flow [Ham86; CC86; Mok88; Cao92; BW08; BS08; BS09; Gu09; GZ10; Wil13]. Let us
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start with recalling this principle in its original form.

Let M be a closed smooth manifold with a Riemannian metric g and let E → M be a vector

bundle equipped with a metric h and a metric connection ∇E . With the use of the Levi-Civita

connection we extend ∇E to a connection on Λ1(M) ⊗ E . Denote by ∆E : C∞(M, E) → C∞(M, E)

the Laplacian of ∇E (see Definition 2.6):

∆Es = trg(∇E ◦ ∇E(s)).

Let ϕ : E → T vertE ' E be a smooth vertical vector field on the total space of E . We are interested

in the short-time behavior of the solutions to a nonlinear parabolic equation for f ∈ C∞(M×[0, ε), E)

df

dt
= ∆Ef + ϕ(f), (4.1)

where the background data (h, g,∇E , ϕ) is allowed to depend smoothly on t.

Let Y ⊂ RN be a closed convex subset. Recall the definition of a support functional.

Definition 4.1. A support functional for a closed convex set Y ∈ RN at a boundary point y ∈ ∂Y

is a linear function

α : RN → R,

such that 〈α, y〉 > 〈α, y′〉 for any y′ ∈ Y . The set of support functionals at y ∈ ∂Y forms a nonempty

closed convex cone in (RN )∗. The set of support functionals of the unit length (with respect to an

underlying metric on RN ) will be denoted Sy.

Let X ⊂ E be a subset of the total space of E satisfying the following properties

(P1) X is closed;

(P2) the fiber Xm = X ∩ Em over any m ∈M is convex;

(P3) X is invariant under the parallel transport induced by ∇E ;

(P4) For any boundary point x ∈ ∂Xm and any support functional α ∈ Sx ⊂ E∗m at x, we have

〈α,ϕ(x)〉 6 0.

Assume that the initial data f0 lies in X, that is f0(m) ∈ Xm for any m ∈M . Hamilton’s maximum

principle states that the set X is invariant under the PDE (4.1), i.e., f(m, t) remains in Xm for

t > 0, as long, as the equation is solvable. Specifically, slightly rephrasing [Ham86], we have the

following results.
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Theorem 4.2. If for every fiber Em, m ∈M , the solutions of the ODE

df

dt
= ϕ(f)

remain in Xm ⊂ Em, then the solutions of the PDE (4.1) also remain in X.

Lemma 4.3. For a closed convex subset Xm ⊂ Em the solution of the ODE

df

dt
= ϕ(f)

remains in Xm if and only if Xm satisfies property (P4).

The proof of both results is based on the fact that the invariance of X under PDE/ODE is

equivalent to the invariance of all the ‘halfspaces’ {x ∈ Xm | 〈α, x〉 6 〈α, f〉} for all f ∈ ∂Xm,

α ∈ Sf , m ∈M .

In what follows, we will need these results in a slightly more general setup. Namely, we

(a) do not assume that connection ∇E preserves the bundle metric h;

(b) in the definition of ∆E , allow to use any (not necessarily the Levi-Civita) connection ∇TM on

TM to extend ∇E to a connection on Λ1(M)⊗ E .

Necessity of this generalization comes from the presence of the Laplacian ∆∇T of a non-metric

connection in equation (3.15). These modifications do not affect neither the setup nor the original

proof of Lemma 4.3, since it depends only on the properties of X in each individual fiber Xm. Hence,

only the proof of Theorem 4.2 requires modifications.

Proof of Theorem 4.2 in a general setup. We will go over the Hamilton’s proof of the theorem and

point the steps requiring the invariance of h under ∇E . In each case, we provide the necessary

modifications to drop this assumption. As in Hamilton’s proof, we will use the basic theory of

differential inequalities for Lipschitz functions [Ham86, §3].

Denote by | · | the length function induced by h on E and E∗. Let f(m, 0) = f0(m) be the initial

data with f0(m) ∈ Xm for any m ∈ M . Let f(m, t) be the solution to the PDE (4.1) on [0, ε] and

denote by BR = {e ∈ E | |e| 6 R} the disk bundle of radius R in E .

Step 1. We modify X and ϕ so that X becomes compact and ϕ becomes compactly supported.

To do that, pick R large enough such that for any m ∈ M , t ∈ [0, ε] we have f(m, t) ∈ BR and
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{x ∈ Em |〈α∗, x〉 > 〈α∗, k∗〉}
k∗•

f(m, t)•

ρ(m, t)

Xm

Figure 4.1: Definition of ρ(m, t).

k∗ ∈ BR, where k∗ is the point of ∂Xm closest to f(m, t). Consider X̃ = X ∩B3R and multiply ϕ(f)

by a cutoff function, which is supported on B3R and equals 1 on B2R. Clearly, if the solution of a

new equation on [0, ε] stays in X̃, then the solution of the initial equation stays in X. From now X

is compact.

Remark 4.4. Unlike the situation in the original proof, with the above modification, the set X does

not remain invariant under ∇E , since h and BR are not preserved by ∇E . However, we still have the

following local invariance property on X ∩BR

(P3∗) There exists δ = δ(g, h,R) > 0 such that for any path γ(τ) ∈ M, τ ∈ [0, 1] of length < δ and

any s ∈ ∂Xγ(0) ∩ BR the ∇E -parallel transport of s along γ lies in ∂Xγ(1). Moreover, this

parallel transport carries support functionals to support functionals.

Step 2. For a fixed m ∈M and t ∈ [0, ε] define

ρ(m, t) = sup{〈α, f(m, t)− k〉},

where the supremum is taken over k ∈ ∂Xm, α ∈ Sk (i.e., α is a support functional at k and

|α| = 1). Since the domain of this supremum is compact, it is attained at some α = α∗, k = k∗. If

f(m, t) 6∈ Xm, then ρ(m, t) equals the distance from f(m, t) to ∂Xm (see Figure 4.1). Otherwise, if

f(m, t) ∈ Xm, then ρ(m, t) equals the negative distance from f(m, t) to ∂Xm. By our choice of R,

point k∗ lies in Xm ∩BR.

Now, define

ρ̂(t) = sup
m∈M

ρ(m, t).
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Function ρ̂(t) is Lipschitz, and ρ̂(t) 6 0 (resp.< 0) if and only f ∈ X (resp. f belongs to the interior

of X). Therefore, to prove Theorem 4.2 it is enough to prove that ρ̂(t) 6 0, provided ρ̂(0) 6 0. We

claim that there exists a constant C > 0 such that

dρ̂

dt
6 C|ρ̂(t)|.

To prove the claim we plug in the definition of ρ̂ and use [Ham86, Lemma 3.5]:

dρ̂

dt
6 sup

{ d
dt
〈α, f(m, t)− k〉

}
,

where supremum is taken over m ∈M , k ∈ ∂Xm, α ∈ Sk such that the maximum of 〈α, f(m, t)−k〉

is attained, i.e., 〈α, f(m, t)− k〉 = ρ̂(t). Together with the equation for f this gives

dρ̂

dt
6 sup{〈α,∆Ef + ϕ(f)〉} = sup{〈α,∆Ef〉+ 〈α,ϕ(f)〉}.

We claim that both summands could be bounded from above by C|ρ̂(t)| for some constant C > 0.

Step 2a. Let {ei} be a g-orthonormal frame of TmM . Define γi(τ), i = 1, . . .dimM to be the

geodesic path of connection ∇TM in the direction ei and denote by Di the covariant derivative along

γ′i. Then

∆E =

dimM∑
i=1

D2
i .

We extend vectors k ∈ Em, α ∈ E∗m along each of the paths γi by ∇E -parallel transport. By property

(P3∗), in a small neighborhood of m ∈M we still have k ∈ ∂X, and α is a support functional at k.

Note, however, that in order to get an element in Sk over a point m0 6= m, we need to normalize

α, since ∇E does not preserve metric h; so α/|α| ∈ Sk. Since point m ∈ M , and the corresponding

vectors k ∈ ∂Xm, α ∈ Sk are chosen in such a way that 〈α, f(m, t) − k〉 attains its maximum —

ρ̂(t), the function Φi(τ) := 〈α/|α|, f(γi(τ), t)− k〉 is maximal at τ = 0. Therefore

0 = Φ′i(0) = (Di|α|−1)ρ̂(t) +Di〈α, f − k〉;

0 > Φ′′i (0) = (D2
i |α|−1)ρ̂(t) + 2(Di|α|−1)Di〈α, f − k〉+ 〈α,D2

i f〉.

With the use of the first equation we can rewrite the inequality as

〈α,D2
i f〉 6 −(D2

i |α|−1)ρ̂(t) + 2(Di|α|−1)2ρ̂(t).

Let C ′ be an upper bound for
∣∣2(Di|α|−1)2 − D2

i |α|−1
∣∣ over m ∈ M , α ∈ {α ∈ E∗m | |α| = 1},
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ei ∈ {v ∈ TmM | |v| = 1}. Summing the inequality above over i = 1, . . . ,dimM , we deduce the

inequality

〈α,∆Ef〉 6 C|ρ̂(t)|,

for C = C ′ dimM , as required.

Remark 4.5. In the original proof, the bundle connection ∇E preserves h, hence for the ∇E -parallel

extension of α we have |α| ≡ 1, so α ∈ Sk. In particular, we could take C = 0.

Step 2b. Recall that α ∈ Sk, therefore by property (P4) 〈α,ϕ(k)〉 6 0. Hence we have

〈α,ϕ(f)〉 = 〈α,ϕ(k)〉+ 〈α,ϕ(f)− ϕ(k)〉 6 〈α,ϕ(f)− ϕ(k)〉 6 C|f − k| = C|ρ̂(t)|,

where C is a generic constant bounding the norm of the derivative of ϕ : E → E .

Step 3. Lipschitz function ρ̂(t) has the initial condition ρ̂(0) 6 0 and satisfies differential

inequality dρ̂/dt 6 C|ρ̂|. By a general result [Ham86], it implies ρ̂(t) 6 0 for t > 0. This is equivalent

to the required invariance: f(m, t) ∈ Xm for any m ∈M , t > 0. This proves Theorem 4.2.

Note that with the same reasoning, we can prove a bit more. If ρ̂(0) < 0, then ρ̂(t) 6 ρ̂(0)e−Ct < 0

for t > 0. Therefore, if f(m, 0) lies in the interior of X for all m ∈ M , then the same is true for

f(m, t), t > 0. So, the interior of X is also preserved by the PDE (4.1).

Theorem 4.2 allows to construct many invariant sets X for certain PDEs of the form (4.1). In

practice, it is easy to construct subset X ⊂ E , satisfying conditions (P1), (P2), (P3) (i.e., closed,

convex, and invariant under a parallel transport), while condition (P4) is the most essential and

difficult to meet. In the next section we apply these results to the evolution equation for the Chern

curvature under the HCF.

4.2 Invariant Sets of Curvature Operators

By the philosophy of Hamilton’s maximum principle, in order to find invariant sets for a heat-type

equation df
dt = ∆f + ϕ(f) one has to study an ODE df

dt = ϕ(f). Following this idea, in the present

section we start with studying an ODE

dΩ

dt
= Ω# + trΛ2(M)(Ω∇T ⊗ Ω∇T ) + advΩ,
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on the space of algebraic curvature tensors Sym1,1(g), g = End(V ) given by the zero-order part of

the evolution equation for Ωg(t) under the HCF (equation (3.15)),

d

dt
Ω = ∆∇T Ω + Ω# + trΛ2(M)(Ω∇T ⊗ Ω∇T ) + aduΩ.

We construct a family of invariant sets for this ODE by verifying property (P4).

4.2.1 ODE-invariant Sets

As in Section 2.1.5, let V = Cn, g = End(V ), and G = GL(V ). Consider Ω(t) ∈ Sym1,1(g) evolving

according to an ODE

dΩ

dt
= Ω# +AA∗ + advΩ, (4.2)

where

1. AA∗ =
∑
i ai ⊗ ai, for some collection of vectors {ai ∈ g};

2. v is an element of g.

Both v and A are allowed to depend on time. Following the notations of Section 4.1, denote

ϕ(Ω) := Ω# + AA∗ + advΩ. We describe a family of convex subsets of Sym1,1(g), for which we are

aiming to prove the invariance under (4.2), and, eventually, the invariance under the HCF.

Let S ⊂ g be a subset invariant under the adjoint action of G = GL(V ) and let F : g→ R be a

continuous function satisfying the following properties.

(?1) F is AdG-invariant. Since diagonalizable matrices are dense in g, F can be though of as a

symmetric function in the eigenvalues {µi} of s ∈ g;

(?2) For any sequence si ∈ g and any λi ↘ 0, such that λisi → s, there exists a finite limit

lim
i→∞

F (si)λ
2
i ,

and its value depends only on s. We denote this limit by F∞(s).

Definition 4.6. Continuous function F : g → R satisfying properties (?1) and (?2) is called nice.

There is a function F∞ : g→ R attached to any nice function.
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Examples of nice F are F (s) = a|trs|2 + b with the corresponding limit F∞(s) = a|trs|2 and

F (s) =
∑
µi∈spec(s) |µi| with F∞(s) ≡ 0. In most of the examples below the only reasonable choice

is F ≡ 0.

Given a tuple (S, F ), we define a subset of Sym1,1(g):

C(S, F ) := {Ω ∈ Sym1,1(g) | 〈Ω, s⊗ s〉tr > F (s) for all s ∈ S}.

As the intersection of closed halfspaces, the set C(S, F ) is closed and convex. Since S and F are

AdG-invariant, set C(S, F ) is also invariant under the induced action of G. We claim that C(S, F )

is preserved by ODE (4.2).

Theorem 4.7. The set C(S, F ) ⊂ Sym1,1(g) is closed, convex, and satisfies property (P4) for

ODE (4.2). In particular, by Lemma 4.3 set C(S, F ) is invariant under this ODE.

Let us first prove a lemma. In this lemma we do not assume that F is continuous. Its proof

follows the lines of [Wil13].

Lemma 4.8. If Ω ∈ C(S, F ) and u ∈ S is such that 〈Ω, u⊗u〉tr = F (u), then 〈Ω# +AA∗+advΩ, u⊗

u〉tr > 0.

Proof. First, note that 〈AA∗, u ⊗ u〉tr =
∑
i |tr(aiu)|2 > 0. Hence, it remains to prove that 〈Ω# +

advΩ, u⊗ u〉tr > 0. We claim, that

(C1) 〈advΩ, u⊗ u〉tr = 0,

(C2) 〈Ω#, u⊗ u〉tr > 0.

Proof of both claims is based on the variation of 〈Ω, u⊗ u〉tr in u.

Fix an element x ∈ g and let u(τ) = exp(τ adx)u be the orbit of u induced by a 1-parameter

subgroup of AdG. By the invariance of S under the adjoint action, we have u(τ) ∈ S. Therefore by

the definition of C(S, F ), the function

Ψ(τ) := 〈Ω, u(τ)⊗ u(τ)〉tr

is bounded below by F (u) and, by our choice of u, attains this minimum at τ = 0. It follows that

Ψ′(0) = 0 and Ψ′′(0) > 0. Specifically,

〈Ω, adxu⊗ u+ u⊗ adxu〉tr = 0,

〈Ω, adxu⊗ adxu〉tr + 〈Ω, adxadxu⊗ u〉tr + 〈Ω, u⊗ adxadxu〉tr > 0.

(4.3)
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The first identity is equivalent to 〈adxΩ, u⊗ u〉tr = 0 for all x ∈ g, implying the vanishing of (C1).

Now let us prove (C2). After summing up the second line of (4.3) for x and
√
−1x we arrive at

〈Ω, adxu⊗ adxu〉tr > 0.

This inequality holds for any x ∈ g, thus Hermitian form QΩ(x, x) := 〈Ω, adxu⊗adxu〉tr = 〈Ω, adux⊗

adux〉tr is positive semidefinite.

Next, we choose an adopted basis {vi}Ni=1 of g as follows.

1. Fix a complement of ker adu in g:

g = ker adu ⊕W.

2. Let {vi}Ni=r+1 be a basis of ker adu, so QΩ(vi, · ) = 0 for any r + 1 6 i 6 N .

3. Fix a basis of V , i.e., identify g = End(V ) with the space of complex n×n matrices, and define

an inner Hermitian product on W

H( · , · ) = tr((adu·)(adu·)∗),

where b∗ = b† is the transposed conjugate of b in this fixed basis.

4. On W we have a positive definite Hermitian form H and a positive semidefinite Hermitian

form QΩ|W . Let v1, . . . , vr be an H-orthonormal basis of W , which diagonalizes QΩ|W :

QΩ(vi, vj) = δijµi, H(vi, vj) = δij , 1 6 i, j 6 r.

Let Ω =
∑N
i,j=1 aijvi ⊗ vj be the expression for Ω in this basis. Then

Ω# =
1

2

N∑
i,j,k,l=1

aijakl[vi, vk]⊗ [vj , vl].
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Therefore

〈Ω#, u⊗ u〉tr =
1

2

N∑
i,j,k,l=1

aijakltr(u[vi, vk])⊗ tr(u[vj , vl])

=
1

2

r∑
i,j,k,l=1

aijakltr(vi[u, vk])⊗ tr(vj [u, vl])

=
1

2

r∑
k,l=1

(
akl

r∑
i,j=1

aijtr(vi[u, vk])⊗ tr(vj [u, vl])
)

=
1

2

r∑
k,l=1

aklQ
Ω(vk, vl) =

1

2

r∑
k=1

akkµk.

It remains to show that akk > 0. Indeed,

0 6 QΩ((aduvk)∗, (aduvk)∗) =

r∑
i,j=1

aijtr(aduvi(aduvk)∗)tr(aduvj(aduvk)∗)

=

r∑
i,j=1

aijH(vi, vk)H(vj , vk) = akk.

Hence akk > 0, and 〈Ω#, u⊗ u〉tr =
∑
k akkµk > 0, as required.

Proof of Theorem 4.7. We prove property (P4) for ODE (4.2) and convex set C(S, F ). Let S be the

closure of S. Clearly C(S, F ) = C(S, F ), so without loss of generality we can assume that S = S.

Take a point at the boundary of C(S, F ):

y ∈ ∂C(S, F ).

We want to describe the set of support functionals for C(S, F ) at y. Let α be such a functional and

take any w ∈ Sym1,1(g) such that 〈α,w〉 > 0. Since α is a support functional, for any θ > 0 we have

y + θw 6∈ C(S, F ), i.e., there exists s ∈ S (depending on w and θ) such that

〈y + θw, s⊗ s〉tr < F (s).

Let θi ↘ 0 be a monotonically decreasing sequence of real numbers. Choose si ∈ S such that the

inequality above holds. Since y ∈ C(S, F ), we have

F (si) + 〈θiw, si ⊗ si〉tr 6 〈y + θiw, si ⊗ si〉tr < F (si).

There are two options.

1. Some subsequence of |si| stays bounded. Then after passing to a subsequence we may assume
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that si → s ∈ S. In this case we have

〈w, s⊗ s〉tr 6 0, 〈y, s⊗ s〉tr = F (s), for some s ∈ S.

2. |si| → ∞. Then after passing to a subsequence we may assume that for some λi ↘ 0 the

sequence λisi converges to an element s in the set:

∂∞S := {Y ∈ g | there exists λi ↘ 0, si ∈ S with λisi → Y }.

This set is called the boundary of S at infinity. From the definition of F∞ it is clear that

Ω ∈ C(∂∞S, F∞). In this case we have

〈w, s⊗ s〉tr 6 0, 〈y, s⊗ s〉tr = F∞(s), for some s ∈ ∂∞S.

Inequality 〈w, s⊗ s〉tr 6 0 is valid in both cases for any w such that 〈α,w〉 > 0. Therefore α cannot

be separated in Sym1,1(g)∗ by a hyperplane 〈α,w〉 = 0 from the set of linear functionals on Sym1,1(g)

Fy := Fby ∪ F∞y ,

where

Fby = {−〈 · , s⊗ s〉tr | s ∈ S s.t. 〈y, s⊗ s〉tr = F (s)},

F∞y = {−〈 · , s⊗ s〉tr | s ∈ ∂∞S s.t. 〈y, s⊗ s〉tr = F∞(s)}.

Hence, α lies in the convex cone spanned by the elements of Fy:

α ∈ Cone(Fy).

Thus, in order to verify property (P4), we need to check that 〈α,ϕ(Ω)〉 6 0 for all α in Fy. For

α ∈ Fby this is exactly the statement of Lemma 4.8. For α ∈ F∞y this is the statement of Lemma 4.8

applied to C(∂∞S, F∞) (at this point continuity of F∞ is not required). This proves property (P4),

and, by Lemma 4.3, the invariance of C(S, F ) under ODE (4.2).

Remark 4.9. The reason why we have to consider the inequalities produced by (S, F ) and (∂∞S, F∞),

is that they provide the closure of the set of inequalities defining C(S, F ) in ‘the space of all linear

inequalities’ on Sym1,1(g).
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4.2.2 PDE-invariant Sets

Let g(t) be a solution to the HCF on (M, g, J). With the results of the previous subsection, we turn

back to PDE (3.15) satisfied by the Chern curvature tensor Ωg(t):

dΩ

dt
= ∆∇T Ω + Ω# + trΛ2(M)(Ω∇T ⊗ Ω∇T ) + advΩ. (4.4)

First, we note that the term

trΛ2(M)(Ω∇T ⊗ Ω∇T )

is of the form AA∗ (see (4.2)) for

A = {Ω∇T (ei, ej), 1 6 i < j 6 dimRM | {ei} is an orthonormal basis of TM}.

Hence, the zero order part of the PDE for Ω is a specialization of the right hand side of ODE (4.2).

Let V = CdimM , G = GL(V ), and denote by

P →M

the principle G-bundle of complex frames in T 1,0M . For any G-space X, denote by X ×G P the

associated fiber bundle. The set C(S, F )×GP ⊂ Sym1,1(End(T 1,0M)) is closed, convex, and satisfies

(P4). It also satisfies property (P3), since C(S, F ) ⊂ End(V ) is invariant under the adjoint action

of GL(V ), and therefore C(S, F ) ×G P is invariant under the action of the holonomy group of any

principle G-connection in P . Hence, we can apply Theorem 4.2 and conclude that C(S, F )×G P is

invariant under (4.4), proving the following theorem.

Theorem 4.10 (Lie-algebraic curvature conditions preserved by the HCF). Consider an AdG-

invariant subset S ⊂ End(V ) and a nice function F : End(V ) → R. Let g = g(t) be a solution to

the HCF (3.4) on an Hermitian manifold (M, g, J) for t ∈ [0, tmax). Assume that Ωg(0) satisfies

C(S, F ), i.e.,

Ωg(0) ∈ C(S, F )×G P.

Then the same holds for all t ∈ [0, tmax).

In Section 4.4 below, we provide some concrete examples of conditions C(S, F ), which are pre-

served by the HCF.
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4.3 Strong Maximum Principle of Brendle and Schoen

Hamilton’s maximum principle in the form of Theorem 4.2 is a version of a weak parabolic maximum

principle, i.e., a statement about preservation of a non-strict inequality along a heat-type flow. In

many settings a strong maximum principle is satisfied. That is a statement characterizing solutions

f(t) of (4.1), which meet the boundary of a preserved set X at some t > 0. For example, in [Ham86],

Hamilton has proved the following lemma.

Lemma 4.11 ([Ham86, pp. Lm. 8.2]). Let B be a symmetric bilinear form on M . Suppose B satisfies

a heat equation

dB

dt
= ∆B + ϕ(B),

where the matrix ϕ(B) > 0 for all B > 0. Then if B > 0 at time t = 0, it remains so for t > 0.

Moreover there exists an interval 0 < t < tmax on which the rank of B is constant and the null space

of B is invariant under parallel translation and invariant in time and also lies in the null space of

ϕ(M).

Lemma 4.11 provides a very strong restriction on the null space of a semipositive bilinear form,

satisfying a heat equation. In our situation, we could apply it to Ωg(t), which evolves by equa-

tion (3.15) and satisfies C(S, F ) at t = 0, where S = End(V ), and F ≡ 0.

It turns out, a slightly weaker statement is true for any C(S, F ). Below we describe a version of

the strong maximum principle for Theorem 4.10.

Theorem 4.12 (Strong maximum principle for Ω). Consider an AdG-invariant subset S ⊂ End(V )

and a nice function F : End(V )→ R. Let g = g(t) be a solution to the HCF (3.4) on an Hermitian

manifold (M, g, J). Assume that Ωg(0) satisfies C(S, F ). Then for any t > 0 the set

N(t) := {s ∈ S ×G P | 〈Ωg(t), s⊗ s〉tr = F (s)}

is preserved by the ∇T -parallel transport. Moreover, if s ∈ N(t), then the 2-form tr(s◦(Ω∇T )( · , · )) ∈

Λ2(M,C) vanishes, or, equivalently,

(a) sikΩ lk
ij

= 0, in particular, F (s) = 0;

(b) sik∇iT kjl = 0.

This theorem is an extension of Brendle and Schoen’s [BS08] strong maximum principle, which

was originally proved for the isotropic curvature evolved under the Ricci flow. A general argument
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in the context of the Ricci flow was given by Wilking [Wil13, A.1]. A similar proof with minor

modifications works for the HCF. In [Ust16, Th. 5.2] this argument was used in the case of Griffiths

positivity.

Proof. We may assume that S is an orbit of the AdG-action on End(V ), otherwise, we decompose

S into separate orbits and prove the result for each orbit independently. In this case, S is a smooth

G-homogeneous space, and S ×G P is a smooth fiber bundle over M .

The idea is to treat N(t) as the zero set of the function

Φ(t, · ) : S ×G P → R, Φ(t, s) = 〈Ωg(t), s⊗ s〉tr − F (s)

and to prove a certain differential inequality for Φ, which makes it possible to apply Proposition 4

of [BS08].

First, note that by assumption, function Φ(0, s) is non-negative on S×GP , and by Theorem 4.10

the same holds for t > 0. By the evolution equation for Ω, (4.4), function Φ: [0, tmax)×(S×GP )→ R

satisfies equation

dΦ(t, s)

dt
= ∆hΦ(t, s) + 〈Ω#, s⊗ s〉tr + |tr(s ◦ (Ω∇T ))|2Λ2(M) + 〈advΩ, s⊗ s〉tr, (4.5)

where ∆h is the horizontal Laplacian of the connection ∇T , defined by the identity

∆hΦ(t, s) = 〈∆∇T Ω, s⊗ s〉.

The horizontal Laplacian can be computed as follows. Let {Xi} be a g(t)-orthonormal collection

of vector fields in a neighbourhood of m ∈ M . Denote Yi := ∇XiXi and let {X̂i}, {Ŷi} be the

∇T -horizontal lifts of these vector fields to S ×G P . Then ∆hΦ(s, t) :=
∑
i(X̂i ·X̂i ·Φ− Ŷi ·Φ).

The summand |tr(s◦(Ω∇T ))|2Λ2(M) in (4.5) is clearly non-negative. Using the same bounds for the

remaining terms, as in [Wil13, Th. A.1], we conclude, that on a small relatively compact coordinate

neighbourhood of (t, s) ∈ (0, tmax)× (S ×G P ), for a large positive constant k∣∣∣∣dΦ

dt

∣∣∣∣ 6 k|DΦ|,

(Yi ·Φ) 6 k|DΦ|,

〈Ω#, s⊗ s〉 > k inf{ d
2

dτ2

∣∣∣
τ=0

Φ(t, exp(τadx)s) | x ∈ End(V ), |x| 6 1},

where DΦ is the gradient of Φ with respect to some fixed background metric on S×G P . Therefore,
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for a large positive constant K we have

∑
i

X̂i ·X̂i ·Φ 6 −K inf
|x|61

(D2Φ(t, s))(adx(s), adx(s)) +K|DΦ|,

where D2Φ is the Hessian of Φ.

At this point, we can use

Proposition 4.13 ([BS08, Prop. 4]). Let U be an open subset of Rn and let X1, . . . , Xm be smooth

vector fields on U . Assume that u : U → R is a non-negative smooth function satisfying

m∑
j=1

(D2u)(Xj , Xj) 6 −K inf
|ξ|61

(D2u)(ξ, ξ) +K|Du|+Ku,

where K is a positive constant. Let F = {x ∈ U : u(x) = 0}. Finally, let γ : [0, 1]→ Ω be a smooth

path such that γ(0) ∈ F and γ′(s) =
∑m
j=1 fj(s)Xj(γ(s)), where f1, . . . , fm : [0, 1] → R are smooth

functions. Then γ(s) ∈ F for all s ∈ [0, 1].

Applying Proposition 4.13, to the function Φ and the vector fields X̂i, we conclude that the zero

set of Φ is invariant under the flow generated by the vector fields X̂i. Since these fields span the

∇T -horizontal subspaces of the fiber bundle S ×G P → M , we obtain that zeros of Φ are invariant

under the ∇T -parallel transport.

Now, let us prove (a) and (b). Let s ∈ S ×G P be a zero of Φ(t0, · ) for some t0 > 0. Function

Φ(t, · ) attains a local minimum at s, t = t0, therefore ∂tΦ(t0, s) = 0. As we have proved in

Theorem 4.10, all summands on the right hand side of (4.5) are non-negative, therefore they must

vanish. In particular, tr(s ◦ (Ω∇T )) = 0, as stated. By the formula for the curvature of the torsion-

twisted connection (Proposition 3.17), we conclude that (a) sikΩ lk
ij

= 0; (b) sik∇iT kjl = 0.

Theorem 4.12 implies a more familiar version of the strong maximum principle.

Corollary 4.14. Consider an AdG-invariant subset S ⊂ End(V ) and a nice function F : End(V )→

R. Let g = g(t) be a solution to the HCF (3.4) on an Hermitian manifold (M, g, J) for t ∈ [0, tmax).

Assume that Ωg(0) satisfies C(S, F ), and that there exists m0 ∈ M such that Ωg(0) satisfies strict

inequalities, defining C(S, F ) and C(∂∞S, F∞), at m0:

〈Ωg(0)
m0

, s⊗ s〉tr > F (s), for any s ∈ (S ×G P )m0
,

〈Ωg(0)
m0

, s⊗ s〉tr > F∞(s), for any s ∈ (∂∞S ×G P )m0
.

(4.6)

Then for any t ∈ (0, tmax), inequalities (4.6) hold everywhere on M .
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Proof. Step 1. We claim that Ωm lies in the interior of (C(S, F )×G P )m if and only if Ωm satisfies

inequalities (4.6). Indeed, if Ω lies on the boundary of (C(S, F )×G P )m0 , then, following the proof

of Theorem 4.7, we can find a support functional of the form

〈 · , s⊗ s〉tr, s ∈ ((S ∪ ∂∞S)×G P )m0
,

such that in (4.6) we have equality.

Conversely, if for some s ∈ ((S ∪ ∂∞S) ×G P )m we have equality in (4.6), then there is y ∈

Sym1,1(End(T 1,0
m M)) arbitrary close to Ωm, such that y 6∈ (C(S, F )×GP )m. So, Ωm ∈ (∂C(S, F )×G

P )m.

Step 2. Run the HCF for small time tε > 0 such that Ω
g(t)
m0 still lies in the interior of (C(S, F )×G

P )m0 for t ∈ (0, tε). Fix any t ∈ (0, tε). By Theorem 4.12 the set N(t) corresponding to (S, F ) is

invariant under ∇T -parallel transport. At the same time, N(t)m0
is empty, therefore for any m ∈M

the set N(t)m is empty as well, i.e.,

〈Ωg(tε), s⊗ s〉tr > F (s)

for any s ∈ S everywhere on M . Applying the same reasoning to (∂∞S, F∞), we conclude that

〈Ωg(tε), s⊗ s〉tr > F∞(s) for any s ∈ ∂∞S everywhere on M .

Step 3. We have proved that Ωg(t), lies in the interior of C(S, F ) ×G P for t ∈ (0, tε). By the

proof of Hamilton’s maximum principle, Ω remains in the interior of the convex set C(S, F ) ×G P

for all t ∈ (0, tmax).

4.4 Examples

Let us provide some specific examples of curvature conditions preserved by the HCF. In most of the

examples below F ≡ 0.

Example 4.15 (Dual-Nakano semipositivity). Recall that the Chern curvature Ω considered as a

section of Sym1,1(End(T 1,0M)) is dual-Nakano semipositive, if it represents a semipositive pairing

on End(T 1,0M)∗, see Definitions 2.19 and 2.20. Choose S = End(T 1,0M). Then the cone C(S, 0)

is the set of dual-Nakano semipositive curvature tensors. By Theorem 4.10 this set is preserved by

the HCF.
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Manifolds admitting a Dual-Nakano semipositive Hermitian metrics are rather scarce. However,

such metrics exist on all complex homogeneous manifolds. We will discuss these metrics in more

detail in Chapter 5.

Example 4.16 (Griffiths semipositivity). Now, we demonstrate preservation of Griffiths semiposi-

tivity under the HCF. It was first proved in [Ust16] by adopting the arguments of Mok [Mok88]

and Bando [Ban84], who proved the corresponding statement for the Kähler-Ricci flow. We deduce

preservation of Griffiths semipositivity as a particular case of Theorem 4.10.

Chern curvature Ω is Griffiths semipositive if and only if Ω ∈ C(S, 0), where

S = {u ∈ End(T 1,0M) | rank(u) = 1}.

This set is clearly AdG-invariant, therefore Theorem 4.10 applies, and Griffiths semipositivity is

preserved under the HCF.

Example 4.17 (Semipositivity of holomorphic orthogonal bisectional curvature). Analogously to the

Kähler situation, the Chern curvature tensor Ω = Ωijkl is said to have a semipositive holomorphic

orthogonal bisectional curvature, if for any ξ, η ∈ T 1,0M s.t g(ξ, η) = 0

Ω(ξ, ξ, η, η) > 0.

Chern curvature Ω considered as a section of Sym1,1(End(T 1,0M)) has semipositive holomorphic

orthogonal bisectional curvature if and only if Ω ∈ C(S, 0), where

S = {u ∈ End(T 1,0M) | rank(u) = 1, tr(u) = 0}.

The set S is again AdG-invariant, and applying Theorem 4.10, we get preservation of this curvature

semipositivity condition under the HCF.

Example 4.18 (Dual-m-semipositivity). For

S = {u ∈ End(T 1,0M) | rank(u) = m},

the cone C(S, F ) consists of the dual-m-semipositive curvature tensors, so this condition is also

preserved under the HCF.

Example 4.19 (Lower bounds on the second scalar curvature). It is well-known that under the Ricci

flow, the lower bound on the scalar curvature is improved, unless the manifold is Ricci-flat. It turns

63



CHAPTER 4. PRESERVATION OF CURVATURE POSITIVITY ALONG THE HCF

out that the second scalar curvature under the HCF satisfies similar monotonicity. Namely, take

S = {Id} ∈ End(T 1,0M). Then for any q ∈ R, F ≡ q the condition C(S, F ) is preserved under the

HCF. In particular, the infimum of 〈Ω, Id⊗ Id〉tr = Ω ji

ij
= ŝc is nondecreasing.

The same result can be obtained without invoking Hamilton’s maximum principle for tensors.

Indeed, after contracting equation (4.4), we get

d ŝc

dt
= ∆ŝc + |ρ∇T |2,

where ρ∇T ∈ Λ2(M,C) is the Chern-Ricci form of the torsion-twisted connection (see Corollary 3.19).

The zero-order expression on the right-hand side is semipositive, and, by the standard maximum

principle for parabolic equations, the quantity infM ŝc is nondecreasing in t.
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Chapter 5

The Hermitian Curvature Flow on

Complex Homogeneous Manifolds

In this chapter, we focus on the behavior of the HCF (3.4)

dgij
dt

= −gmnΩmnij −
1

2
gmngpsTmpjTnsi (5.1)

on a (not necessary compact) complex homogeneous manifold M = G/H acted on by a connected

complex group G with the isotropy subgroup H. There are several reasons why these manifolds are

of a special interest for us.

1. Homogeneous manifolds form a rich family for which one can explicitly compute certain metrics

and analyze behavior of a metric flow. For example, in [GP10; Lau13; BL17] authors study

the Ricci flow on Lie groups and homogeneous manifolds; in [Bol16; FV15] authors consider

the pluriclosed flow, on compact homogeneous surfaces and solvmanifolds, respectively. We

expect that our computations will shed some light on the geometric nature of the HCF (5.1).

2. Non-symmetric rational homogeneous manifolds G/P , where G is a reductive algebraic group

and P is its parabolic subgroup, are projective manifolds, however, there are ‘natural’ Her-

mitian metrics induced by the Killing metric of the compact form of G, which are typically

non-Kähler (see [Yan94] for an explicit computation on a complete flag manifold F3). It is

interesting to analyze whether our metric flow distinguishes these special metrics.
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3. In Chapter 4, we, in particular, proved that the HCF preserves dual-Nakano/Griffiths semi-

positivity of the initial metric. Homogeneous manifolds equipped with submersion metrics (see

Definition 5.6 below) are essentially the only known source of such examples.

Most of the results in this chapter can be found in [Ust17a].

5.1 Complex Homogeneous Manifolds

Throughout this chapter, for an homogeneous manifold M = G/H we denote by g and h the

complex Lie algebras of G and H, with the Lie bracket of g written as [ · , · ]. Let us recall some

basic facts from the structure theory of complex homogeneous spaces. For more details we refer the

reader to [Huc90]. Given a homogeneous manifold G/H, we define the isotropy representation of H

(resp. h) in g/h by restricting the adjoint representation Ad (resp. ad) and considering the induced

action on g/h:

σAd : H → GL(g/h), σad : h→ End(g/h).

This representations are not necessarily faithful. The structure group of the tangent bundle T 1,0M

can be reduced to the image of H in GL(g/h).

Remark 5.1. In the next chapter, we prove that, for a large class of natural metrics on M , the image

σad(h) ⊂ End(g/h) ' End(T 1,0
[eH]M) coincides with the Lie algebra of the torsion-twisted holonomy

group, hol∇T (see Definition 3.20 and Corollary 6.8).

Consider

N := StabG(h) = {γ ∈ G | Adγ(h) = h}.

Remark 5.2. We have v ∈ Lie(N) ⊂ g if and only if, [v] ∈ g/h is annihilated by the image of the

isotropy representation σad.

Clearly H ⊂ N , so there is a fibration

G/H → G/N.

If N = H, then G/H belongs to a very special class of rational homogeneous manifolds, i.e., it is

projective and birational to the projective space. One can think of G/N as the AdG-orbit of h inside

the complex Grassmanian GrC(dim g,dim h). Fibration G/H → G/N is called Tits fibration.
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Theorem 5.3 ([Huc90, Thm. 1.2]). Let M be a connected compact complex manifold which is homo-

geneous with respect to the action of a connected complex Lie group G. Let M = G/H → G/N =: Q

be the Tits fibration. Then

1. The fiber F = N/H is a connected complex parallelizable manifold.

2. The base Q is a rational homogeneous manifold.

Remark 5.4. Compact complex parallelizable and rational homogeneous manifolds have explicit

descriptions:

• Any compact complex parallelizable manifold is of the form K/Γ, where K is a complex Lie

group, and Γ is its discrete subgroup.

• Any rational homogeneous manifold is of the form S/P , where S is complex semi-simple group,

and P ⊂ S is a parabolic subgroup (i.e., contains the maximal connected solvable subgroup

of S).

Now, we turn our attention to metric structures on complex homogeneous manifolds. LetM(M)

be the infinite-dimensional space of Hermitian metrics on M modulo isometry. There are two

distinguished subspaces of M(M).

Definition 5.5 (Invariant metrics). Define Minv(M) to be the space of G-invariant Hermitian

metrics on M . These metrics are in one-to-one correspondence with AdH -invariant Hermitian

metrics on the vector space g/h, see [KN63, p. X.3]:

Minv(M)←→ {AdH -invariant metrics on g/h} .

Clearly, the set Minv(M) is preserved by any metric flow of the form dg
dt = R(g), where R is a

tensor field, such that its value at m ∈ M is determined by the germ of g at m, provided that the

solution to the flow is unique. Hence, any such ‘natural’ metric flow defines an ODE on the finite

dimensional space Minv(M).

The study of invariant metrics on homogeneous manifolds is a classical subject of differential

geometry [Bes87]. These metrics provide a “hands-on” construction of a multitude of explicit

Riemannian manifolds with certain prescribed geometric properties. One can then translate the

differential-geometric problems into the questions of basic linear algebra and representation theory.
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However, on a general homogeneous manifold,Minv(M) could be empty. Below we will be interested

in a different class of metrics, which is always nonempty for any complex homogeneous manifold.

Definition 5.6 (Submersion metrics). Let h be an Hermitian metric on the Lie algebra g of a

complex Lie group G. Metric h defines a unique right-invariant Hermitian metric on G, such that

its restriction to T 1,0
e G ' g coincides with h. Then there is a unique induced metric on G/H, which

turns the projection G→ G/H into an Hermitian submersion. We defineMsub(M) to be the space

of submersion metrics. We have a map

{Hermitian metrics on g} /AdG −→M
sub(M).

There is an alternative description of submersion metrics. The holomorphic tangent bundle of a

complex homogeneous manifold M is globally generated by g ⊂ H0(M,T 1,0M) via the infinitesimal

evaluation map. Hence, any Hermitian metric h on the vector space g induces a metric on its

quotient T 1,0M . Note that typically the submersion Hermitian metrics are not G-homogeneous.

In general, there is no reason for the setMsub(M) to be invariant under a metric flow. However,

it turns out that the HCF (5.1) preservesMsub(M) (see Theorem 5.18 below). In some sense this is

an expected result, since the HCF preserves Griffiths/dual-Nakano semipositivity (see Theorem 4.10,

and examples in Section 4.4) and the metrics in Msub(M) are the only known dual-Nakano semi-

positive metrics on a general complex homogeneous manifold (see Proposition 5.7 below). What

is somewhat less expected, is that there exists an ODE on Sym1,1(g) — the set of Hermitian met-

rics on g∗, which induces the HCF on all G-homogeneous manifolds independently of the isotropy

subgroup H.

The evolution term of this ODE is given by a generalization of a familiar operation # and turns

out to be very similar to the ODE defined by the zero-order part of the evolution equation for the

Riemannian curvature (resp. Chern curvature) under the Ricci flow (resp. HCF). Namely, in the case

of the Ricci flow the curvature operator R ∈ Sym2(so(n)) evolves (in the moving frame) according

to the equation

dR

dt
= ∆R+R2 +R#

and the relevant ODE is

dR

dt
= R2 +R#.
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For the HCF on the set of submersion metrics Msub(M), the ODE for B ∈ Sym1,1(g) takes form

dB

dt
= B#.

This is a Riccati-type system of equations, as the evolution term B# is quadratic in B.

In a special case when G is the complexification of a compact simple Lie group, we use the ODE

for B ∈ Sym1,1(g) to construct scale-static solutions to the HCF on any homogeneous manifold of G.

Such a metric corresponds to the Killing metric of the compact real form of G and can be thought of

as the HCF-analogue of the Einstein metric. We explicitly solve the ODE in some simple examples

(see Example 5.20 for the diagonal Hopf surface and Example 5.26 for the Iwasawa threefold) and

formulate conjectural pinching behavior of this differential equation (Conjecture 5.21). It seems that

at this point we need a better understanding of the algebraic properties of the operation # to resolve

the conjecture and to understand the behavior of the HCF on Msub(G/H) for a general G .

In Section 5.2.3, we make the first step towards this understanding and study the blow-up

behavior of ODE dB
dt = B# on an arbitrary complex Lie group. Namely, we analyze how the growth

rate of a solution B(t) depends on the algebraic properties of g (see Theorems 5.24 and 5.25).

5.2 Hermitian Curvature Flow of Submersion Metrics

5.2.1 Curvature of Submersion Metrics

In this section, we explicitly compute the Chern curvature of a submersion metric on a complex

homogeneous manifold M = G/H. The short exact sequence of complex vector spaces

0→ h→ g→ g/h→ 0

defines a short exact sequence of holomorphic vector bundles on M . Specifically, at [γH] ∈ M we

have

0→ Adγh
i−→ g

p−→ T 1,0
[γH]M → 0,

where g → M is a trivial bundle, and Ad(h) := {Adγh}[γH]∈M is its subbundle. The second

fundamental form of this exact sequence

β ∈ Λ1,0(M,Hom(Ad(h), T 1,0M))
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can be computed as follows. For a fixed w ∈ h and ξ ∈ T 1,0M , let v ∈ g be a lift of ξ, i.e., p(v) = ξ.

Consider a curve

t 7→ [exp(tv)γH] ∈M,

and a section of Ad(h) over this curve

t 7→ Adexp(tv)γw = Adexp(tv)Adγw.

Using the flat connection on g, we find

βξ(Adγw) = p

(
d

dt

∣∣∣
t=0

Adexp(tv)Adγw

)
= p([v,Adγw]).

It is easy to see that the expression on the right hand side does not depend on the lift of ξ ∈ T 1,0
[γH]M

to v ∈ g.

Let h ∈ Sym1,1(g∗) be an Hermitian metric on the Lie algebra of G. Then we have a submersion

metric on M , which we denote by g = p∗h. Metric h also defines a metric i∗h on Ad(h), and the

latter, together with p∗h, yield the adjoint of the second fundamental form

β∗ ∈ Λ0,1(M,Hom(T 1,0M,Adγ(h))).

According to the computation of Section 2.1.4 (see Corollary 2.25), the Chern curvature Ω of

(M,p∗h, J), considered as a section of Λ1,1(M)⊗ Λ1,1(M), is given by

(p∗h)(Ω(ξ, η)ζ, ν) = (i∗h)(β∗η(ζ), β∗
ξ
(ν)). (5.2)

One obtains a much cleaner expression for the Chern curvature, if, following the convention

adopted throughout this thesis, treats Ω as a section of Sym1,1(End(T 1,0M)). In this case, (5.2)

transforms into

Ω = trAdγh(β ⊗ β) :=

dim h∑
i=1

β(wi)⊗ β(wi), (5.3)

where {wi} is an (i∗h)-orthonormal basis of Adγh.

Observe that by formula (5.3), the Chern curvature Ω ∈ Sym1,1(End(T 1,0M)) is semipositive

in the dual-Nakano sense (this fact was already discussed at the end of Section 2.1.4). Now, let us

compute the kernel of Ω at [eH] ∈ G/H. Endomorphism u ∈ End(T 1,0
[eH]M) ' End(g/h) lies in the
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kernel of

〈Ω, · ⊗ · 〉tr

if an only if tr(β(w) ◦ u) = 0 for any w ∈ h. By the formula for β, this is equivalent to

tr(σad(w) ◦ u) = 0, ∀w ∈ h.

In particular, since β does not depend on the choice of metric on g, the kernel of 〈Ω, · ⊗ · 〉tr also

depends only on the pair (g, h) itself. We collect the observations above in the following proposition.

Proposition 5.7 (The kernel of Ω for a submersion metric). Let M = G/H be a complex homoge-

neous manifold, equipped with a submersion metric g = p∗h, for h ∈ Sym1,1(g∗). Then

1. the Chern curvature Ω of (M, g, J) is dual-Nakano semipositive;

2. the kernel K of 〈Ω, · ⊗ · 〉tr at [eH] is independent of h and is given by the tr-orthogonal

complement of the image of isotropy representation σad(h) ⊂ End(g/h):

K = {u ∈ End(g/h) | tr(σad(w) ◦ u) = 0 ∀w ∈ h}.

5.2.2 ODE on the Symmetric Square of a Lie Algebra

In this section, we explicitly compute the HCF on a complex homogeneous manifold, equipped with

a submersion metric g = p∗h, h ∈ Sym1,1(g∗). Denote by {sα} a basis of holomorphic vector fields

induced by one-parameter subgroups of G, i.e., sα = p(eα), where {eα} is the basis of g, and

p : g→ T 1,0M

is the evaluation map.

Let sα = aiα ∂/∂z
i be the local coordinate expression for the vector field sα, and denote aiα := aiα.

Functions aiα are holomorphic. In the coordinates, the submersion metric g = gij is given by the

expression

gij =
(
aiαa

j

β
hαβ

)−1

. (5.4)

Indeed, aiαa
j

β
hαβ is the Hermitian metric on Λ1,0(M) induced by the inclusion p∗ : Λ1,0(M) → g∗,

and the Hermitian metric gij on T 1,0M is its inverse.

Proposition 5.8. Let (G/H, g, J) be a complex homogeneous manifold, with a submersion metric

g = p∗h, h ∈ Sym1,1(g∗). Let {eα}mα=1 be an h-orthonormal frame of g, with sα := p∗(eα). Then

71



CHAPTER 5. HCF ON COMPLEX HOMOGENEOUS MANIFOLDS

the evolution term for the HCF considered as a section of Sym1,1(T 1,0M) is given by

Ψ(g) =
1

2

m∑
α,β=1

[sα, sβ ]⊗ [sα, sβ ],

where [ · , · ] is the commutator of vector fields on M = G/H.

Proof. First, we recall that by Proposition 3.9, the evolution term Ψ(g) for a general metric g is

Ψij = gmn∂m∂ng
ij − ∂mgin∂ngmj .

Next, since vector fields sα = aiα∂/∂z
i are holomorphic, all the derivatives ∂aiα, ∂aj

β
vanish.

Using this fact and the coordinate expression for Ψ, with the metric gij as in (5.4), we find

Ψ(g)ij = gmn∂m∂ng
ij − ∂mgin∂ngmj

= hγδamγ a
n
δ
hαβ∂ma

i
α∂na

j
β − h

γδ∂ma
i
γa
n
δ
hαβamα ∂na

j

β

= hαβhγδ
(
amγ ∂ma

i
α · anδ ∂na

j

β
− amα ∂maiγ · anδ ∂na

j

β

)
=

1

2
hαβhγδ

(
amγ ∂ma

i
α − amα ∂maiγ

)
·
(
an
δ
∂na

j

β
− an

β
∂na

j

δ

)
.

(5.5)

In the last equality we used the fact that the whole expression is symmetric under the change

(αβ) ↔ (γδ). The last two multiples in the last expressions are exactly the i and j coordinates of

the Lie brackets [amγ ∂/∂z
m, amα ∂/∂z

m] and [an
δ
∂/∂zn, an

β
∂/∂zn]. Since {eα}mα=1 is an h-orthonormal

basis of g, we get the stated formula.

The expression (5.5) for Ψ(g) suggests that the HCF with g0 = p∗h ∈ Msub(M) is governed by

the Lie algebra structure on the space of holomorphic vector fields H0(M,T 1,0M). To study this

relation, we introduce an algebraic operation, generalizing operation # on the space of the Chern

curvature tensors (Section 2.1.5).

Definition 5.9 (Operation #). Let gR be a real Lie algebra. Define a symmetric bilinear ad gR-

invariant operation

#: g⊗2
R ⊗ g⊗2

R → g⊗2
R ,

by the formula

(v1 ⊗ v2)#(w1 ⊗ w2) = [v1, w1]⊗ [v2, w2].

If we choose a basis {eα} of gR and denote by cγαβ its structure constants, then for B = {Bαβ},
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D = {Dαβ}, B,D ∈ g⊗2
R

(B#D)αβ = cαεδc
β
γθB

εγDδθ.

Clearly, the operation # preserves the parity of the decomposition g⊗2
R = Sym2(gR) ⊕ Λ2(gR),

i.e., defines the maps

#: Sym2(gR)⊗ Sym2(gR)→ Sym2(gR),

#: Λ2(gR)⊗ Λ2(gR)→ Sym2(gR),

#: Λ2(gR)⊗ Sym2(gR)→ Λ2(gR).

Now, let g be a complex Lie algebra. Similarly to the real case, we denote by the symbol # the map

#: (g⊗ g)⊗ (g⊗ g)→ (g⊗ g),

(v1 ⊗ v2)#(w1 ⊗ w2) = [v1, w1]⊗ [v2, w2].

As in the real case, # preserves the parity of g ⊗ g, in particular, it induces a bilinear map on the

set of Hermitian elements of g⊗ g

#: Sym1,1(g)⊗ Sym1,1(g)→ Sym1,1(g).

We will write B# for 1
2B#B.

Remark 5.10. The operation # was introduced by Hamilton in the context of the Ricci flow,

see [Ham86]. Definition 5.9 differs from the one of Hamilton in several aspects:

1. originally # was defined only for the real Lie algebra so(n), while our definition makes sense

for any Lie algebra;

2. Hamilton used # only for the part of Sym2(so(n)) satisfying the first Bianchi identity;

3. Hamilton used the Killing metric to interpret # as a bilinear operator on the space self-adjoint

operators.

This operation and its algebraic properties play the key role in the characterization of compact

manifolds with 2-positive curvature operator [BW08]. For an arbitrary real metric Lie algebra this

operation was also considered by Wilking in [Wil13, §3].

Remark 5.11. Operation # is natural, i.e., if ρ : g → h is a homomorphism of Lie algebras, then

ρ(B)#ρ(D) = ρ(B#D) for any B,D ∈ Sym1,1(g).
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The following lemma easily follows from the definition by considering a basis of g which diago-

nalizes the two forms.

Lemma 5.12. Let g be a real (resp. complex) Lie algebra. Assume that forms B,D ∈ Sym2(g)

(resp.B,D ∈ Sym1,1(g)) are symmetric (resp. Hermitian) positive definite. Then B#D is positive

semidefinite with ker(B#D) = Ann([g, g]) ⊂ g∗.

Example 5.13. Let gR = su(2) and denote by 〈 , 〉 the invariant metric on gR normalized in such a

way that 〈[e1, e2], e3〉 = ±1 for any orthonormal triple e1, e2, e3. Take BR ∈ Sym2(gR) and chose a

〈 , 〉-orthonormal basis e1, e2, e3, which diagonalizes BR with eigenvalues λ1, λ2, λ3. Then

B#
R = 1/2(λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3)#(λ1e1 ⊗ e1 + λ2e2 ⊗ e2 + λ3e3 ⊗ e3)

= (λ2λ3e1 ⊗ e1 + λ1λ3e2 ⊗ e2 + λ1λ2e3 ⊗ e3)

is diagonalized in the same basis with the eigenvalues λ2λ3, λ1λ3, λ1λ2. In particular, if BR is

proportional to the dual of the metric 〈 , 〉 then so is B#
R .

Example 5.14. Let gR be a compact simple Lie algebra with an invariant metric 〈 , 〉. Let BR = 〈 , 〉−1

be the dual of 〈 , 〉, i.e., for an orthonormal basis e1, . . . , em let BR =
∑
ei ⊗ ei. Then B#

R is

proportional to BR with a positive factor.

Indeed, since gR is simple, [gR, gR] = gR, and by Lemma 5.12 both BR and B#
R are positive

definite ad gR-invariant elements in Sym2(gR). As gR is simple, such an element is unique up to

multiplication by a positive constant, so B#
R = λBR, λ > 0.

We expect that proportionality B# = λB characterizes the ad gR-invariant positive definite forms

on any compact simple Lie algebra.

Question 5.15. Let gR be a compact simple real Lie algebra with an invariant metric 〈 , 〉. Let

B ∈ Sym2(gR) be a positive definite form such that B# = λB. Is B−1 proportional to 〈 , 〉?

Remark 5.16. If gR is a real Lie algebra equipped with an invariant metric 〈 , 〉 extended in an

obvious way to all tensor products of gR, then a trilinear form

P (B,C,D) := 〈B#C,D〉, B,C,D ∈ gR
⊗2.

is totally symmetric. It follows from the coordinate expression for B#C through the structure

constants and the fact that in any 〈 , 〉-orthonormal basis the structure constants are totally skew-

symmetric.
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Remark 5.17. If g = gR ⊗ C is the complexification of a real Lie algebra, then a real symmetric

form BR ∈ Sym2(gR) defines an Hermitian form ϕ(BR) ∈ Sym1,1(g): in the basis {eα} of gR and the

corresponding basis of g this form is given by ϕ(BR)αβ := (BR)αβ . It is clear that ϕ(BR)#ϕ(BR) =

ϕ(BR#BR).

Let us turn back to a complex homogeneous manifold M = G/H, equipped with a submersion

metric g = p∗h, h ∈ Sym1,1(g∗). Note that if a group K acts on M = G/H and actions of G and K

commute, then the metric g is K-invariant. We will use this observation in Example 5.20 below.

With Proposition 5.8 and Definition 5.9 we can reduce the HCF on a complex homogeneous

manifold (M, g0, J) to an ODE for h−1 = B ∈ Sym1,1(g).

Theorem 5.18 (HCF of a submersion metric). Let M = G/H be a complex homogeneous manifold

equipped with a submersion Hermitian metric g0 = p∗h0 ∈ Msub(M), where h0 ∈ Sym1,1(g∗). Let

B(t) be the solution to the ODE 
dB

dt
= B#,

B(0) = h−1
0 .

(5.6)

Then g(t) = p∗(B(t)−1) solves the HCF on (M, g0, J). In particular g(t) ∈Msub(M).

Proof. If B(t) solves (5.6), then by Proposition 5.8 the Hermitian metric g̃(t) on Λ1,0(M), induced

from B(t) ∈ Sym1,1(g) via the map Λ1,0(M)→ g∗, satisfies the partial differential equation
dg̃

dt
= Ψ(g̃−1),

g̃(0) = g−1
0 ,

where, as in Proposition 3.9, Ψ is identified with a section of Sym1,1(T 1,0M). Hence g(t) = g̃(t)−1

is the solution to the HCF on (M, g0, J).

Surprising consequence of this theorem is that ODE (5.6) gives solutions to the HCF on all G-

homogeneous manifolds M = G/H equipped with a submersion metric independently of the isotropy

subgroup H.

Example 5.19. Let G = SL(2,C). The Lie algebra of G has the compact real form su(2), i.e.,

sl(2,C) = su(2) ⊗ C. Assume that B0 ∈ Sym1,1(sl(2,C)) corresponds to BR ∈ Sym1,1(su(2)) (see
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Remark 5.17). Then ODE (5.6) reduces to the equation for BR ∈ Sym2(su(2))

dBR

dt
= B#

R .

Let 〈 , 〉 be a positive definite multiple of the Killing form of su(2). Assume that 〈 , 〉 is normalized

in such way that for any orthonormal basis e1, e2, e3 we have 〈[e1, e2], e3〉 = ±1.

Let e1, e2, e3 be an orthonormal basis of su(2) diagonalizing BR. Denote the eigenvalues of BR

with respect to 〈 , 〉 by λ1, λ2, λ3. In this basis the evolution equation takes the form

dλ1

dt
= λ2λ3

dλ2

dt
= λ1λ3

dλ3

dt
= λ1λ2.

(5.7)

These equations imply that detBR = λ1λ2λ3 satisfies

ddetBR

dt
= (λ2λ3)2 + (λ1λ3)2 + (λ1λ2)2 > 3(detBR)4/3.

So detBR(t) > 1/(C − t)3 for some C > 0, and the solution of (5.7) blows up as t → tmax < ∞.

Moreover, for any i, j ∈ {1, 2, 3}

d

dt
(λ2
i − λ2

j ) = 0,

hence all λi → +∞ as t→ tmax, i ∈ {1, 2, 3} and λi/λj → 1. It follows that BR(t) pinches towards

the (dual of the) Killing form:

BR(t)/|BR(t)|∞ → 〈 , 〉−1 = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3.

Example 5.20 (Diagonal Hopf surface). Diagonal Hopf surface is the quotient M =
(
C2\(0, 0)

)
/Γ,

where the generator of Γ ' Z acts as (z1, z2) 7→ (µz1, µz2) for some µ ∈ C with |µ| > 1. M is a

compact complex manifold diffeomorphic to S3 × S1. Note that the natural action of SL(2,C) on

C2 commutes with Γ, hence descends to the transitive action on M .

As in Example 5.19, any element BR ∈ Sym2(su(2)) defines a metric g0 on M . By the computa-

tion of Example 5.19 and Theorem 5.18, under the HCF this metric converges after normalization

to the metric g∞ = p∗(〈 , 〉).
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In coordinates z1, z2 on C2\{0} ⊂ C2 this metric is given by

gij∞ =
1

|z|4
(δij |z|2 + zizj).

Example 5.19 demonstrates the expected behavior of the ODE (5.6) for any complex Lie group

G with a simple compact real form. Namely, assume that g = gR ⊗ C is the complexification of a

simple compact real Lie algebra gR with an invariant metric 〈 , 〉. Let us denote by

κ ∈ Sym1,1(g)

the element corresponding to 〈 , 〉−1 ∈ Sym2(gR) (as in Remark 5.17). We refer to κ as the Killing

form. For such G and κ we propose the following conjecture.

Conjecture 5.21. Let B(t) be the solution to the ODE (5.6) on the maximal time interval [0, tmax).

Then there exists γ ∈ G, λ ∈ R such that B(t) pinches towards λAdγ(κ):

B(t)/|B(t)|∞ → λAdγ(κ), t→ tmax.

Let complex Lie group G and κ ∈ Sym1,1(g) be as above. The following result demonstrates that

the submersion metric induced by κ on a G-homogeneous manifold, is HCF-Einstein, i.e., scale-static

under the flow. This observation provides some evidence for Conjecture 5.21 to be true.

Theorem 5.22. Let G be the complexification of a simple compact Lie group. Let M = G/H be

a complex homogeneous manifold equipped with the Hermitian metric g0 = p∗(κ
−1). Then g0 is

scale-static under the HCF, i.e., Ψ(g0) = λg0 for some positive constant λ.

Proof. In Example 5.14 we observed that for BR = 〈 , 〉−1

B#
R = λBR.

Hence for κ = ϕ(BR) (see Remark 5.17) we have κ# = λκ. This fact together with Theorem 5.18

imply that g0 is scale static under the HCF.

5.2.3 Blow-up Behavior of the ODE

In this section, we study the HCF on a complex Lie group G, equipped with a submersion metric

g0 ∈Msub(G) (g0 is identified with its restriction to g ' TidG). By Theorem 5.18 the HCF reduces
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to the ODE for B(t) ∈ Sym1,1(g) with B0 = g−1
0
dB

dt
= B#,

B(0) = B0.

(5.8)

It turns out, that the growth rate of a solution B(t) is completely determined by the algebraic

properties of the underlying Lie algebra. Namely, B(t) has polynomial, exponential growth, or a

finite time blow-up, depending on whether g is nilpotent, solvable, or admits a semisimple quotient.

Before we state and prove the results on the growth rate of a solution to (5.8) let us make the

following elementary observation.

Proposition 5.23. Let B(t), D(t) ∈ Sym1,1(g) be the solutions to (5.8) with the initial conditions

B(0) = B0 and D(0) = D0 such that B0 > D0 > 0. Then for t > 0

B(t) > D(t).

Proof. We claim that for B,D ∈ Sym1,1(g) if B > D > 0, then B# > D#. Indeed, let {ei} be a

basis diagonalizing simultaneously B and D:

B =
∑

aiei ⊗ ei, k =
∑

biei ⊗ ei

with ai > bi > 0. Then B# =
∑
i,j aiaj [ei, ej ]⊗ [ei, ej ] >

∑
i,j bibj [ei, ej ]⊗ [ei, ej ] = D#.

Now, fix a background positive-definite form I ∈ Sym1,1(g), and define

ρ(t) = sup
ξ∈g∗, I(ξ,ξ)=1

(
D(t)(ξ, ξ)−B(t)(ξ, ξ)

)
(5.9)

We have ρ(0) 6 0, D(t) 6 B(t) + ρ(t)I. In particular, by the claim above, D#(t) 6 B#(t) +

ρ(t)I#B + ρ2(t)I#. As in the proof of Hamilton’s maximum principle,

dρ

dt
6 sup

(
D#(t)(ξ, ξ)−B#(t)(ξ, ξ)

)
,

where the supremum is taken over all such ξ that in (5.9) the supremum is achieved. Therefore, on

any fixed time interval with |ρ(t)| bounded, we have

dρ

dt
6 C1ρ(t) + C2ρ

2(t) 6 C|ρ(t)|

for some constant C. Hence ρ(t) 6 0, provided ρ(0) 6 0.
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Theorem 5.24. For a complex Lie algebra g and a positive definite Hermitian form B0 ∈ Sym1,1(g)

let B(t) be the solution to the ODE (5.8) on the maximal time interval [0; tmax), 0 < tmax 6 +∞.

Then the following are equivalent:

1. g is a nilpotent Lie algebra;

2. for any initial data B0, the solution B(t) has at most polynomial growth, i.e., tmax = +∞,

and there exists a polynomial p such that

B(t) < p(t)B0;

3. for some initial data B0 the solution B(t) has subexponential growth, i.e., tmax = +∞, and

for any ε > 0 there exists Tε > 0 such that for t > Tε

B(t) < eεtB0.

Proof. We prove implications 1⇒ 2⇒ 3⇒ 1.

1⇒ 2. By Ado’s theorem for nilpotent Lie algebras [Hoc66] there exits a faithful representation

of g into some gl(V ) such that g acts by nilpotent endomorphisms. With the use of the basic theory

of Lie algebras [Hum73, §3.3] one can assume that the image of this representation lies in n(n) —

the Lie algebra of strictly upper-triangular n× n matrices:

ρ : g→ n(n).

We extend ρ to a map ρ : Sym1,1(g)→ Sym1,1(n(n)) in the obvious way.

Let {Ei,j |1 6 i < j 6 n} be the elementary matrices spanning n(n). We fix a collection of

positive real numbers {f (k)
0 }

n−1
k=1 such that the Hermitian form f0 ∈ Sym1,1(n(n))

f0 :=
∑

16i<j6n

f
(j−i)
0 Ei,j ⊗ Ei,j

is greater than ρ(B0). Consider the solution f(t) ∈ Sym1,1(n(n)) to the ODE

df

dt
= f#

with the initial condition f(0) = f0. After expanding the definition of f# we see that this ODE is
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equivalent to a system of n− 1 scalar equations

df (k)

dt
=

1

2

k−1∑
j=1

f (j)f (k−j), k = 1, . . . , n− 1.

Solving these equations inductively for k = 1, . . . , n− 1 we get f (k)(t) = pk−1(t), where pk−1(t) is a

polynomial of degree (k − 1).

Hermitian forms ρ(B(t)) and f(t) satisfy the same ODE with the initial conditions ρ(B0) < f0.

Therefore Proposition 5.23 implies that ρ(B(t)) 6 f(t). Since f(t) has polynomial growth, we get

ρ(B(t)) < p(t)f0

for some polynomial p(t). Finally, using the fact that ρ is faithful and B0 ∈ Sym1,1(g) is positive

definite, we find a constant C such that

B(t) < Cp(t)B0.

As B(t) is bounded on any interval [0, tmax), the solution extends to the whole [0; +∞).

2⇒ 3. Is trivially true.

3⇒ 1. Assume that 1 does not hold, and g is not nilpotent. Then by Engel’s theorem for some

x ∈ g the operator adx is not nilpotent. Hence the map adx : g→ g has non-zero eigenvalue λ:

[x, y] = λy, y 6= 0.

Consider f0 := a0x⊗x+ b0y⊗ y ∈ Sym1,1(g). Note that f#
0 = |λ|2a0b0y⊗ y, hence for the functions

a(t), b(t) with a(0) = a0, b(0) = b0 satisfying

da

dt
= 0,

db

dt
= |λ|2ab

the form f(t) = a(t)x⊗ x+ b(t)y ⊗ y solves the ODE (5.8). Explicitly these functions are given by

a(t) = a0, b(t) = b0e
|λ|2a0t. If positive numbers a0, b0 are small enough, one has f0 < B0, hence by

Proposition 5.23 f(t) < B(t). Therefore B(t) cannot have subexponential growth. Contradiction.

Theorem 5.25. For a complex Lie algebra g and a positive definite Hermitian form B0 ∈ Sym1,1(g),

let B(t) be the solution to the ODE (5.8) on the maximal time interval [0; tmax), 0 < tmax 6 +∞.
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Then the following are equivalent:

1. g is a solvable Lie algebra;

2. for any initial data B0, the solution B(t) has at most exponential growth, i.e., tmax = +∞,

and there exist constants C,K such that

B(t) < CeKtB0;

3. for some initial data B0, the solution B(t) exists on [0,+∞), i.e., tmax = +∞.

Proof. The proof is essentially analogous to Theorem 5.24. We prove implications 1⇒ 2⇒ 3⇒ 1.

1⇒ 2. By Ado’s theorem there exits a faithful representation of g into some gl(V ), and by Lie’s

theorem one can assume that the image of this representation lies in b(n) — the Borel subalgebra

of gl(V ), consisting of upper-triangular n× n matrices:

ρ : g→ b(n).

Let {Ei,j |1 6 i 6 j 6 n} be the elementary matrices spanning b(n). We fix a collection of

positive real numbers {f (k)
0 }

n−1
k=0 such that the Hermitian form f0 ∈ Sym1,1(b(n))

f0 :=
∑

16i6j6n

f
(j−i)
0 Ei,j ⊗ Ei,j

is greater than ρ(B0). Consider the solution f(t) ∈ Sym1,1(b(n)) to the ODE (5.8) with the initial

condition f(0) = f0. After expanding the definition of f# we see that this ODE is equivalent to a

system of n− 1 scalar equations

df (k)

dt
=

1

2

k∑
j=0

f (j)f (k−j), k = 1, . . . , n− 1

with f (0)(t) ≡ f
(0)
0 . Solving these equations inductively for k = 1, . . . , n − 1 we get f (k)(t) =

qk(ef
(0)
0 t), where qk(t) is a polynomial of degree k with qk(0) = 0.

Hermitian forms ρ(B(t)) and f(t) solve the same ODE with the initial conditions ρ(B0) < f0.

Therefore Proposition 5.23 implies that ρ(B(t)) 6 f(t). Since f(t) has exponential growth, we get

ρ(B(t)) < C0e
Ktf0

for some constants C0,K. Finally, using the fact that ρ is faithful and B0 ∈ Sym1,1(g) is positive
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definite, we find a constant C such that

B(t) < CeKtB0.

As B(t) is bounded on any interval [0, tmax), the solution extends to the whole [0; +∞).

2⇒ 3. Is trivially true.

3 ⇒ 1. Assume that 1 does not hold, and g is not solvable. Denote by Rad(g) the maximal

solvable ideal. Then the quotient g/Rad(g) is semisimple Lie algebra and has a simple summand

g0. So there is a surjective homomorphism onto a simple Lie algebra.

ρ : g→ g0.

As in the set-up for Conjecture 5.21 let κ ∈ Sym1,1(g0) be a positive-definite Hermitian form

corresponding to the Killing metric of the compact real form of g0. Then according to Example 5.14

and Theorem 5.22 κ# = λκ for some λ > 0.

Now, let B(t) ∈ Sym1,1(g) be a solution to the ODE (5.8) defined on [0,+∞). Choose ε0 > 0

such that ε0κ < ρ(B(0)). If ε(t) satisfies the equation

dε

dt
= λε2, ε(0) = ε0,

then f(t) = ε(t)κ solves the ODE (5.8) for f(t) ∈ Sym1,1(g0) with the initial data f(0) = ε0κ.

Explicitly we have

ε(t) =
ε0

1− ε0λt
.

On the one hand we have the solution f(t) to (5.8) blowing up at the finite time t = (ε0λ)−1, on the

other hand f(0) < ρ(B(0)), hence by Proposition 5.23 for any t > 0

f(t) < ρ(B(t)).

Contradiction with the finiteness of B(t) for all t ∈ [0,+∞).

Example 5.26 (Iwasawa manifold). Let G be the 3-dimensional complex Heisenberg group

G :=




1 a b

0 1 c

0 0 1

 a, b, c ∈ C

 .
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and Γ ⊂ G its discrete subgroup, consisting of matrices with a, b, c ∈ Z[i]. The quotient M = G/Γ

is the Iwasawa manifold. M is a compact complex parallelizable manifold, i.e., the base of its Tits

fibration is a point (see Theorem 5.3). M does not admit any Kähler metric; in fact, since M is not

formal, there is no complex structure on M admitting a Kähler metric.

The Lie algebra of G is g = span(∂a, ∂b, ∂c) ' n(3). Consider g0 = p∗(B
−1
0 ), where B0 ∈

Sym1,1(g). Denote by B(t) the solution to the ODE (5.8). Theorem 5.24 provides an explicit

expression for B(t) and, in particular, implies that B(t) polynomially blows up as t → ∞. In fact,

since B# is proportional to ∂b⊗∂b for any B ∈ Sym1,1(g), we see that ∂b⊗∂b is the only coordinate

of B(t), which blows up. For the solution g(t) = p∗(B(t)−1) to the HCF this means that as t→∞

g(t)(∂b, ∂b)→ 0, g(t)|span(∂a,∂c) ≡ g(0)|span(∂a,∂c).

To get a geometric picture, consider the Gromov-Hausdorff limit of (G/Γ, g(t)). It is easy to see

that the projection onto coordinates a and c defines a holomorphic fibration

π : G/Γ→ C/Z[i]× C/Z[i].

The fibers of π are the orbits of the flow generated by C·∂c. The limiting behavior of g(t) implies

that in the Gromov-Hausdorff limit, the fibers with the submersion metric uniformly collapse to a

point as t→ +∞ and G/Γ collapses to the product of elliptic curves:

(G/Γ, g(t)) →
GH

(C/Z[i]× C/Z[i], g(0)|span(∂a,∂c)).

Using the computations of Theorem 5.24 one can show that the HCF exhibits a similar behavior

on all complex nilmanifolds of the form G/Γ, where G is a complex nilpotent group, and Γ ⊂ G is

a cocompact lattice.
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Applications

In this chapter, we discuss applications of the results of Chapters 4 and 5. First, motivated by

the preservation of the curvature positivity under the HCF (Theorem 4.10), we formulate a weak

differential-geometric version of the Campana-Peternell conjecture. We use the HCF to make some

initial progress in approaching this conjecture. Next, we use Theorem 4.10 to study geometric

properties of the HCF on general Hermitian manifolds.

6.1 Weak Campana-Peternell Conjecture

6.1.1 Formulation

Recall that Campana-Peternell conjecture states, that any Fano manifold M with nef tangent bundle

T 1,0M is rational homogeneous. Motivated by the interplay between Frankel’s and Hartshorne’s

conjectures, we propose the following conjecture.

Conjecture 6.1. Any complex Fano manifold which admits an Hermitian metric of Griffiths/dual-

Nakano semipositive curvature must be isomorphic to a rational homogeneous space.

Explicit computations of Chapter 5 suggest a more refined version of the conjecture.

Conjecture 6.2 (Weak Campana-Peternell conjecture). Let (M,J) be a compact complex manifold,

such that M 6' Pn, M 6' X × Y , dimX,dimY > 0. Let M be equipped with an Hermitian metric,

such that its Chern curvature dual-Nakano/Griffiths semipositive. Assume additionally that the first
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Chern-Ricci form

ρ =

√
−1

2π
Ω nm
ij

gmndz
i ∧ dzj

is positive. Then (M, g, J) is isometric to a rational homogeneous manifold (G/H, p∗h, J), with

p∗h — a submersion metric induced from h ∈ Sym1,1(g∗).

Proposition 6.3. Any rational homogeneous manifold (G/H, p∗h, J) satisfies the assumptions of

the weak Campana-Peternell conjecture.

Proof. By the results of Section 5.2.1, the Chern curvature of (G/H, p∗h, J) equals

trAd(h)(β ⊗ β),

where β ∈ Λ1,0(M,Hom(Ad(h), T 1,0M)) is the second fundamental form of the extension

0→ Ad(h)→ g→ T 1,0M → 0.

In particular, (G/H, p∗h, J) has a dual-Nakano semipositive curvature.

Now, prove the positivity of the Chern-Ricci form. Let ξ ∈ T 1,0
m (G/H) be a vector in the kernel

of ρ. For simplicity, assume m = [eH]. There is an exact sequence

0→ h
i−→ g

p−→ T 1,0
[eH](G/H)→ 0,

and by the formula for Ω, (5.3),

ρ(ξ, ξ) = |βξ|2Hom(h,g/h).

Pick v ∈ g, such that ξ = p(v) ∈ g/h. Then ξ lies in the kernel of ρ if and only if, for every w ∈ h

βξ(w) = p([v, w]) = 0.

This is equivalent to

[v, h] ⊂ h,

i.e., exp(v) ∈ G normalizes h. But, by the structure result for complex homogeneous manifolds

(Theorem 5.3), any rational homogeneous manifold G/H coincides with the base of its Tits fibration

G/N . Therefore, the normalizer of H in G coincides with H itself, so exp(v) ∈ H, and v ∈ h. Hence

0 = p(v) = ξ ∈ g/h.

The relation between Campana-Peternell conjecture and its weak version is similar to the relation
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between Hartshorne’s and Frankel’s conjecture. Namely, they characterize the same set of projective

manifolds, while the assumption on the algebraic side (Hartshorne/Campana-Peternell) is weaker,

than the assumption on the differential-geometric side (Frankel/weak Campana-Peternell):

∃ Kähler metric g, s.t. (T 1,0M, g) >Gr 0 =⇒T 1,0M is ample

∃ Hermitian metric g, s.t. (T 1,0M, g) >Gr 0 =⇒T 1,0M is nef .

In a certain sense, the weak Campana-Peternell conjecture is analogous to the generalized

Frankel’s conjecture. Namely, if we assume that M is not a product of two manifolds of smaller

dimension and is not isomorphic to the projective space, then, under the corresponding curvature

semipositivity assumption, we have a rigidity result for the metric:

1. According to the generalized Frankel’s conjecture, the metric is uniquely determined by the

underlying manifold, which is a rational symmetric space of rank > 2.

2. According to the weak Campana-Peternell conjecture, the metric is expected to belong to a

finite-dimensional space of submersion metrics.

6.1.2 Uniformization of Griffiths Quasipositive Hermitian Manifolds

We use the strong maximum principle in the form of Corollary 4.14 together with Mori’s solution

to Hartshorne’s conjecture to prove the following uniformization result.

Theorem 6.4. Let (M, g, J) be a compact complex n-dimensional Hermitian manifold such that its

Griffith curvature is quasipositive, i.e.,

1. the Chern curvature Ωg is Griffiths semipositive;

2. Ωgm is Griffiths positive at some point m ∈M .

Then M is biholomorphic to the projective space Pn.

Proof. Let g(t) be a solution to the HCF on (M, g, J) with the initial data g(0) = g. By Corol-

lary 4.14, applied to

S = {u ∈ End(V ) | rank(u) = 1}, F ≡ 0,

for any t > 0, Hermitian manifold (M, g(t), J) has Griffiths positive Chern curvature. In particular,
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the first Chern-Ricci form

ρ =
√
−1trEnd(T 1,0M)Ω, ρij :=

√
−1Ω k

ijk
,

which represents (up to a factor of 2π) the first Chern class of the anticanonical bundle −KM , is

strictly positive. Therefore −KM is ample, and M is projective.

On the other hand, strict Griffiths-positivity of Ω, implies the ampleness of T 1,0M (see Sec-

tion 2.1.4). Therefore, we can apply the result of Mori [Mor79] and conclude that M is isomorphic

(as a smooth projective manifold over C) to the projective space Pn.

Remark 6.5. The use of the HCF is essential for the proof Theorem 6.4, since a priori, we know

neither (1) whether M is algebraic, nor (2) if it admits an Hermitian metric of positive Griffiths

curvature. From the assumptions on M it follows only that −KM is nef and big. Using a recent result

of Yang [Yan17, Thm. 1.2], we can conclude that −KM is ample, under an additional assumption

that M admits a Kähler metric.

It would be interesting to give a direct proof of Theorem 6.4, independently of Mori’s results,

e.g., along the lines of [CST09], where the authors used the limit of the Kähler-Ricci flow starting

with a Griffiths positive metric, to prove that the underlying manifold is Pn. However, such a proof

will require substantially better understanding of the analytical properties of the HCF flow, than

we have at the moment.

6.1.3 Geometry of Dual-Nakano Semipositive Hermitian Manifolds

In this section, (M, g, J) is an Hermitian manifold with a dual-Nakano semipositive curvature. We

will not be able to resolve the weak Campana-Peternell conjecture, but we use the HCF to recover

certain geometric structures on M , which are similar to the ones of complex homogeneous spaces.

Let g(t), t ∈ [0, tmax) be the solution to the HCF on (M, g, J). Now, fix t ∈ (0, tmax). Applying

Theorem 4.12, we conclude that Hermitian form Ωg(t) ∈ Sym1,1(End(T 1,0M)) has constant rank,

and the kernel of 〈Ω, · ⊗ · 〉tr:

K := {v ∈ End(T 1,0M) | 〈Ω, v ⊗ · 〉tr = 0},

is invariant under the torsion-twisted parallel transport. The next theorem shows, that K is closely

tied with the holonomy algebra of ∇T and is not arbitrary.
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Theorem 6.6. Let g(t) be the solution to the HCF on (M, g, J). Assume that g(0) is dual-Nakano

semipositive. Then for t > 0, at any point m ∈ M , subspace K is the tr-orthogonal complement of

the restricted torsion-twisted holonomy subalgebra:

K = {v ∈ End(T 1,0M) | tr(v ◦ w) = 0 ∀ w ∈ hol∇T }. (6.1)

Proof. Let us denote the space on the right hand side of (6.1) by L. By Ambrose-Singer holonomy

theorem [AS53], the complex holonomy Lie algebra at m ∈M is given by

(hol∇T )m = spanC{Γ(γ)∗(Ω∇T (X,Y ))m′},

where the span is taken over all points m′ ∈ M , all paths γ : [0, 1]→ M with the endpoints m, m′,

all tangent vectors X,Y ∈ Tm′M , and Γ(γ)∗ : Sym1,1(End(T 1,0M))m′ → Sym1,1(End(T 1,0M))m

denotes the torsion-twisted parallel transport along γ.

The explicit formula for the (1,1)-type part of Ω∇T (Proposition 3.17) implies, that, if tr(v◦w) = 0

for any w ∈ hol∇T , then

tr(v ◦ Ω∇T (ξ, η)) = 0 for any ξ, η ∈ T 1,0M.

The latter is equivalent to v ∈ K, therefore, we have

L ⊂ K.

Conversely, consider v ∈ K over m ∈ M . By Theorem 4.12, tr(v ◦ Ω∇T (X,Y )m) = 0 for any

X,Y ∈ TmM . Moreover, as K is invariant under the torsion-twisted parallel transport, we also have

tr(Γ∗(γ)v ◦ Ω∇T (X,Y )m′) = 0,

for any m′ ∈M , X,Y ∈ Tm′M , and a path γ from m to m′. Equivalently,

tr(v ◦ Γ∗(γ−1)(Ω∇T (X,Y )m′)) = 0.

Therefore, by Ambrose-Singer theorem, K ⊂ L.

Theorem 6.6 provides strong obstructions on the geometry of M . Since we are assuming that M

is not isomorphic to Pn, it cannot admit a dual-Nakano positive metric, therefore K is necessarily

nonempty. By the theorem, it means that the C-span of the torsion-twisted holonomy Lie algebra
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is necessarily a proper Lie subalgebra of End(T 1,0M):

hol∇T ( End(T 1,0M).

In the Riemannian case, in a similar situation, application of Berger’s holonomy theorem implies

that either the underlying manifold locally splits as a product, or it is a symmetric space (see, e.g.,

[Mok88], [Gu09], [BS08]). In our case, the situation is much more subtle, since connection ∇T is

not metric and has nonzero torsion. Neither de Rham decomposition for the reducible Rieman-

nian holonomy, nor Berger’s holonomy theorem work in such generality. However, it is plausible

that, under our assumptions on (M, g, J), connection ∇T carries some additional special features.

A potential approach to the weak Campana-Peternell conjecture is to answer the following question.

Question 6.7. What are possible torsion-twisted holonomy groups on a non-homogeneous Hermitian

manifold (M, g, J)?

An answer to this question would provide an Hermitian generalization of the Berger holonomy

theorem.

If we apply Theorem 6.6 to a homogeneous manifold equipped with a submersion metric, we

obtain the following corollary.

Corollary 6.8. Let M = G/H be a complex homogeneous space with a submersion metric g = p∗h0

and the isotropy representation

σad : h→ End(g/h).

Then for the complex holonomy Lie algebra of the torsion-twisted connection hol∇T ⊂ End(T 1,0M) '

End(g/h) we have

hol∇T = σad(h).

Proof. Of course, this corollary can be proved by a straightforward computation, since the torsion

twisted connection of (T (G/H), p∗h0) can be found explicitly. Below, however, we give a slightly

indirect argument based on the HCF.

For simplicity, we do all computations on T 1,0
[eH]M ' g/h. Let, as before, K ⊂ End(g/h) be the

kernel of 〈Ωg, · ⊗ · 〉tr. Consider h(t) ∈ Sym1,1(g∗), t ∈ (−ε, 0], such that, for h−1 ∈ Sym1,1(g), we

have

d(h−1(t))

dt
= (h−1)#, h(0) = h0.
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Then, by Theorem 5.18, g(t) = p∗h(t) is the solution to the HCF on G/H, therefore, we can apply

Theorem 6.6 to g = p∗h0 and conclude that

K = {v ∈ End(g/h) | tr(v ◦ w) = 0 ∀ w ∈ hol∇T }.

Similarly, by Proposition 5.7,

K = {v ∈ End(g/h) | tr(σad(w) ◦ v) = 0 ∀w ∈ h}.

Therefore, both σad(h) and hol∇T represent the tr-orthogonal complement of K.

Remark 6.9. Given an Hermitian manifold (M, g, J) with a dual-Nakano semipositive metric, we

can apply Hamilton’s Lemma 4.11 to Ωg(t). Therefore, we conclude that for t > 0 the holonomy

Lie algebra hol∇T of the torsion-twisted connection is constant in t. This observation agrees with

the fact that on a complex homogeneous manifold, hol∇T coincides with the image of the isotropy

representation σad(h), and the latter is clearly independent of the metric.

6.2 Monotonicity under the Hermitian Curvature Flow

6.2.1 Non-decreasing Scalar Quantities

Theorem 4.10 allows to produce many monotonic quantities for the HCF on (M, g, J). Let S ⊂

End(V ) be a closed scale-invariant, AdG-invariant subset. Define

µ(S, g) := max{µ ∈ R | Ω satisfies C(S, F ), where F (s) = µ|trs|2} ∈ R ∪ {±∞},

where max{∅} := −∞.

Proposition 6.10. Let g = g(t) be the solution to the HCF on (M, g, J). Then for any S ⊂ End(V )

as above the quantity µ(S, g(t)) is non-decreasing along the HCF. Moreover, µ(S, g(t)) > µ(S, g(0))

for t > 0, unless µ(S, g(0)) ∈ {−∞, 0,+∞}.

Proof. If Ωg(0) satisfies C(S, µ|trs|2), then by Theorem 4.10, Ωg(t) also satisfies C(S, µ|trs|2) for

t > 0. Hence µ(S, g(t)) > µ(S, g(0)), and we have non-strict monotonicity.

Now, assume µ(S, g(0)) 6∈ {−∞, 0,+∞}, but µ(S, g(t)) = µ(S, g(0)) = µ. Therefore for any

εi > 0 we have Ωg(t) 6∈ C(S, (µ−εi)|trs|2). Letting εi ↘ 0, we conclude that Ωg(t) hits the boundary
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of C(S, µ|trs|2) (here we are using the closedness and scale-invariance of S). Therefore, in notations

of Theorem 4.12, N(t,m) 6= ∅. By Theorem 4.12 (a), it can happen only if µ = 0.

A similar statement is valid for other one-parametric monotonic family of functions F (s).

For S = {λ Id | λ ∈ R} Proposition 6.10 gives the monotonicity of the lower bound for ŝc, see

Example 4.19.

6.2.2 HCF-periodic Metrics

There is an essential difficulty in using a geometric flow in classification problems, if there exist

stationary breathers — non-fixed periodic solutions to the flow. In the Kähler setting, there are

no stationary breathers for the Kähler-Ricci, and the metrics fixed by the Kähler-Ricci flow are

tautologically the Ricci flat (Calabi-Yau) metrics. At the first glance, the situation with the HCF is

much more subtle, since the vanishing of the evolution term S(2) +Q for the HCF, does not have any

clear cohomological interpretation. At the moment, we cannot completely exclude periodic solutions

for the HCF. However, a possible existence of an HCF-periodic solution on (M, g, J) puts strong

geometric obstructions on the geometry of M . In particular, similarly to the Kähler situation, we

can conclude that K
M̃

is trivial, and c1(M) ∈ H2(M,Z) is torsion.

Theorem 6.11. If a compact (M, g, J) admits a periodic solution to the HCF, then

1. the torsion-twisted Ricci form ρ∇T vanishes;

2. the restricted torsion-twisted holonomy group is a subgroup of SL(T 1,0M);

3. the universal cover of M (denote it M̃) admits a nowhere vanishing holomorphic volume form.

Proof. The vanishing of ρ∇T implies that there is the inclusion of the restricted holonomy group

Hol0∇T ⊂ SL(T 1,0M),

and, using the ∇T -parallel transport, we can construct a nowhere vanishing holomorphic section of

K
M̃

on M̃ . Hence it remains to prove that ρ∇T = 0.

Consider a periodic solution to the HCF on (M, g, J). Contracting the evolution equation for
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Ω ∈ Sym1,1(End(T 1,0M)) twice, we obtain a parabolic equation for ŝc:

d ŝc

dt
= ∆ŝc + |ρ∇T |2.

Using a standard strong maximum principle, we conclude that infM ŝc is strictly increasing in time,

unless ρ∇T = 0 everywhere on M . Therefore, since the solution to the HCF is periodic, the quantity

infM ŝc cannot be strictly increasing in time, and we indeed have ρ∇T = 0.

Remark 6.12. Triviality of K
M̃

is stronger than just vanishing of c1(M) ∈ H2(M,C). For example,

Calabi-Eckman complex structures on S3 × S3 have holomorphically non-trivial canonical bundle,

while c1 = 0, see, e.g., discussion in [BDV09, §2].

For the next proposition we need to introduce the following notion. An Hermitian manifold

(M, g, J) is balanced, if dωn−1 = 0; it is conformally balanced, if the manifold (M, eϕg, J) is balanced

for some function ϕ. Let M be a manifold, satisfying the assumptions of Theorem 6.11. Assume

additionally, that the full holonomy group preserves the volume form:

Hol∇T ⊂ SL(T 1,0M),

i.e., M admits a∇T -parallel holomorphic volume form Ψ ∈ Λn,0(M). By Theorem 6.11 this happens,

e.g., if π1(M) = 1. In this case, we can prove even stronger restrictions on the geometry of M .

Proposition 6.13. Given (M, g, J), Ψ ∈ Λn,0(M) as above, M is conformally balanced with the

conformal factor

eϕ = |Ψ|
2

n−1 .

Proof. The statement of the proposition is equivalent to the vanishing

d(|Ψ|2ωn−1) = 0. (6.2)

Given ξ ∈ T 1,0M , let us compute ξ · |Ψ|2:

ξ · |Ψ|2 = g(∇ξΨ,Ψ) = g((∇ξ −∇Tξ )Ψ,Ψ)

= −ξkT iskipΨi1i2...i(p−1)isi(p+1)...inΨj1j2...jng
i1j1 . . . ginjn

= −ξkT pkp|Ψ|
2 = −〈θ1,0, ξ〉|Ψ|2,
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where θ1,0 = (θ1,0)kdz
k = T pkpdz

k ∈ Λ1,0(M) is the (1,0) part of the Lee form θ = trωdω. Therefore

∂(|Ψ|2ωn−1) = ∂|Ψ|2 ∧ ωn−1 + |Ψ|2 ∧ ∂ωn−1 = |Ψ|2(−θ1,0 ∧ ωn−1 + ∂ωn−1) = 0,

where in the last step we used the characteristic identity for the Lee form:

θ ∧ ωn−1 = dωn−1.

Remark 6.14. Equation (6.2) is very similar to the dilatino equation of the Strominger system [GF16]:

d(|Ψ|ωn−1) = 0.

It is still an open question, whether the HCF admits non-trivial, i.e., not stationary, periodic

solutions.

Question 6.15. Is it true that if g = g(t) is a periodic solution to the HCF on (M, g, J), then g(t)

is a stationary solution, i.e., g ≡ g(0)?

Theorem 6.11 motivates us to formulate the following problem.

Problem 6.16. Let (M, g, J,Ψ) be a conformally balanced Hermitian manifold with Ψ — a trivial-

ization of the canonical bundle. When does M admit an HCF-stationary metric? By Theorem 6.11,

such a metric necessarily will have ρ∇T = 0, and Ψ will be ∇T -parallel.

This problem is a non-Kähler version of Calabi’s conjecture. Namely, if the underlying manifold

(M,J) admits a Kähler metric ω, then by Yau’s theorem [Yau77], there exists a unique Kähler

metric ωϕ = ω + i∂∂ϕ, such that Ric(ωϕ) = 0. Of course, in this case the torsion vanishes, and all

four Chern-Ricci curvatures coincide and equal zero.
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Conclusion

Recently, the study of metric flows in the Hermitian setting started gaining an increasing amount

of interest and is forming a new actively evolving field. The main perspective of the present thesis

is that these flows could and should be applied to approach various uniformization problems in

complex geometry.

Following the familiar route of the development of the Ricci flow, we identified a member

(the HCF) of a general Hermitian curvature flows family, which preserves many natural curva-

ture (semi)positivity conditions in Hermitian geometry. To analyze the HCF, we introduced a new

geometric concept, the torsion-twisted connection ∇T , which is canonically attached to any Hermi-

tian manifold. With the use of the torsion-twisted connection, we were able to find a clear evolution

equation for the Chern curvature Ω under the HCF and managed to apply a fundamental technical

tool — a refinement of Hamilton’s maximum principle for tensors, to Ω.

Complex manifolds, admitting Hermitian metrics of positive curvature, are well-understood due

to the solutions to Frankel’s and Hartshorne’s conjectures. Therefore the strong maximum principle

for the Chern curvature evolving under the HCF provides an approach for studying manifolds admit-

ting Hermitian metrics of semipositive curvature. Study of such manifolds fits well into uniformiza-

tion conjectures in complex and algebraic geometry. Motivated by the algebraic Campana-Peternell

conjecture and by the fact that the Griffiths/dual-Nakano semipositivity is preserved under the

HCF, we proposed a weak differential-geometric Campana-Peternell conjecture. The HCF allows

to make some initial progress towards this conjecture and suggests further possible generalizations.

Explicitly computing the HCF on the complex homogeneous manifolds, equipped with submersion
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metric, we obtained additional evidence supporting the weak Campana-Peternell conjecture.

Since the study of the HCF has been just started, there are still many basic question to answer.

While some of these questions make sense for any member of the general HCF family, our findings

suggest that some of them might become more accessible for the specific HCF, which is considered

in this thesis. Let us review some of the possible directions for the future research.

Streets and Tian [ST11] proved, that if tmax is the maximal time such that there exists a solution

to the HCF on [0, tmax), then lim supt→tmax
max{|Ω|, |T |, |∇T |} = +∞. This basic blow-up is quite

impractical to use for analyzing the long-time existence of the flow. Therefore it is important to

answer the following question.

Problem 7.1. Is it possible to prove the existence of the HCF up to time tmax by controlling less

geometric quantities, than the full norms of Ω, T , ∇T?

By Theorem 6.11, the existence of a periodic solution on (M, g, J) puts severe constraints on the

geometry of manifold M . This motivates the following problem.

Problem 7.2. Does there exist a non-trivial, i.e., non-stationary, periodic solution to the HCF on

some (M, g, J)? What can be said about HCF-static metrics?

Important analytical tool in studying Ricci flow is the monotonicity of F and W functionals.

It would be very helpful to have such functionals for the HCF, or its modifications. In particular,

existence of such functional will most likely help ruling out breathers.

Problem 7.3. Find analogues of F and W functionals for the HCF.

While analysis of a long-time behavior of an Hermitian flow on a general Hermitian manifold

might be challenging, sometimes it is reasonable to focus on Hermitian metrics satisfying some partial

‘integrability condition’, e.g., pluriclosed metrics (∂∂ω = 0), Gauduchon metrics (∂∂ωn−1 = 0),

balanced metrics (∂∗ω = 0), conformally balanced metrics (∂∗ω = ∂ϕ), locally conformally Kähler

metrics.

Problem 7.4. Does there exist any partial metric integrability condition, preserved by the HCF?

The evolution equation for Ω under the HCF (Proposition 3.22) and the strong maximum prin-

ciple (Theorem 4.12) suggest that the geometry of the HCF has strong ties with the properties of
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the torsion-twisted connection ∇T and its holonomy group. It would be interesting to find a di-

rect geometric interpretation of ∇T and to address differential-geometric questions concerning the

torsion-twisted holonomy Lie algebra hol∇T . In the Riemannian setting, the restricted holonomy of

the Levi-Civita connection belongs to a very small list, unless the underlying manifolds is locally

symmetric (see [Ber55]). We proved that on a homogeneous manifold (G/H, p∗h, J), the torsion-

twisted holonomy Lie algebra coincides with the image of the isotropy representation. One could

expect that similarly to the Riemannian case, hol∇T belongs to a small list, unless the underlying

manifold is locally homogeneous.

Problem 7.5. Does there exist Berger-type classification of the torsion-twisted holonomy groups

Hol∇T ? What can be said about manifold (M, g, J), if Hol∇T is reducible? ‘small’?

We proved that the HCF of a submersion metric on a complex homogeneous manifold G/H

is induced by an ODE on Sym1,1(g). Conjectural behavior of the HCF on complex homogeneous

manifolds of simple reductive algebraic groups suggests a pinching of this ODE towards the Killing

form (Conjecture 5.21). This is a purely algebraic problem, which could be approached by carefully

studying the interplay between the ODE and the decomposition of Sym1,1(g) into the irreducible

subrepresentations of G.

Problem 7.6. Let g be a simple complex Lie algebra, B(0) ∈ Sym1,1(g), B(0) > 0. Denote by

B(t) ∈ Sym1,1(g) the solution to the ODE ∂tB = B#. Then there exists γ ∈ G, such that B(t)

pinches towards Adg(κ), where κ is the Killing metric of the compact form of g.

The coordinate expression for the HCF evolution term

Ψ(g)ij = gmn∂m∂ng
ij − ∂mgin∂ngmj

indicates that Ψ is a natural nonlinear second order differential operator Λ1,1(TM) → Λ1,1(TM).

An answer to the following question might shed the light on the geometric nature of the HCF.

Problem 7.7. Does Ψ fit into an hierarchy of natural differential operators, e.g., similar to the

Schouten-Nijenhuis bracket Λ∗(TM)⊗ Λ∗(TM)→ Λ∗(TM)?

Another specific direction concerns the study of the HCF on complex surfaces. Many computa-

tions substantially simplify in dimC = 2 and make it easier to study the long-time behavior of the

flow.
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Problem 7.8. Investigate the HCF on complex surfaces.

Purportedly, if we understand singularity formation under the HCF in complex dimension 2

well enough, we might try using this flow to develop an Hermitian version of analytical minimal

model program (see [ST17]) and to study class VII surfaces, by analyzing the blow-up behavior of

the HCF. Another possible direction of research concerns questions on the existence of integrable

complex structures. Supposedly, with a complete understanding of limiting behavior of Hermitian

flows, we may be able to rule out existence of complex structures on certain topological manifolds.

Solutions to the problems above will build a foundation for further applications of the HCF.
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